• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于频域分析的高速列车侧风倾覆机理

王铭 李星星 李小珍

王铭, 李星星, 李小珍. 基于频域分析的高速列车侧风倾覆机理[J]. 西南交通大学学报, 2024, 59(2): 315-322, 342. doi: 10.3969/j.issn.0258-2724.20210571
引用本文: 王铭, 李星星, 李小珍. 基于频域分析的高速列车侧风倾覆机理[J]. 西南交通大学学报, 2024, 59(2): 315-322, 342. doi: 10.3969/j.issn.0258-2724.20210571
WANG Ming, LI Xingxing, LI Xiaozhen. Mechanism of High-Speed Train Crosswind Overturning Stability Based on Frequency Domain Analysis[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 315-322, 342. doi: 10.3969/j.issn.0258-2724.20210571
Citation: WANG Ming, LI Xingxing, LI Xiaozhen. Mechanism of High-Speed Train Crosswind Overturning Stability Based on Frequency Domain Analysis[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 315-322, 342. doi: 10.3969/j.issn.0258-2724.20210571

基于频域分析的高速列车侧风倾覆机理

doi: 10.3969/j.issn.0258-2724.20210571
基金项目: 国家自然科学基金(1434205,51708465)
详细信息
    作者简介:

    王铭(1989—),男,助理研究员,研究方向为风-车-桥耦合振动,E-mail:ming.wang@swjtu.edu.cn

    通讯作者:

    李小珍(1970—),男,教授,研究方向为风-车-桥耦合振动,E-mail:xzhli@swjtu.edu.cn

  • 中图分类号: U270.1

Mechanism of High-Speed Train Crosswind Overturning Stability Based on Frequency Domain Analysis

  • 摘要:

    侧风作用下列车的动态环境以轮轨相互作用为主向,以空气动力作用为主演变,列车的侧风倾覆行为成为威胁列车行车安全性的主要诱因. 首先,采用精细化车-轨耦合模型开展列车侧风倾覆的频域特性分析,以明确侧风倾覆响应对列车模型的敏感性;基于考虑模态特性的频域分析框架,推导脉动风及轨道不平顺与列车倾覆动力响应间的传递函数,结合相应参数进行分析,以直观揭示列车的侧风倾覆机理. 结果表明:列车倾覆行为受绕车体下心侧滚模态和车体沉浮模态控制影响,其风荷载影响要明显大于轨道不平顺;在轨道不平顺激励下,第一阶模态贡献主要由轨向不平顺引起,第二阶模态贡献主要由高低不平顺引起,在脉动风荷载激励下,其顺风向脉动风分量起主要贡献;车速、风速和风向角的增大都会引起列车动力响应的增大,进而降低列车安全运营时的最大允许风速;失效概率的增大会降低动力响应的极值,进而提高安全运营风速.

     

  • 图 1  车辆动力学模型

    Figure 1.  Vehicle dynamics model

    图 2  顺风向随机风场模拟及列车风速时程提取

    Figure 2.  Longitudinal turbulence field and the time history of train wind speed

    图 3  轨道不平顺模拟

    Figure 3.  Simulated track irregularities

    图 4  轮轨垂向接触力谱密度

    Figure 4.  PSDs of vertical wheel-rail contact force

    图 5  功率谱密度函数

    Figure 5.  Power spectral density function

    图 6  轨道不平顺激励下模态频响函数及响应功率谱密度

    Figure 6.  Modal transfer function and PSDs under track irregularities excitations

    图 7  风荷载激励下模态频响函数及响应功率谱密度

    Figure 7.  Modal transfer function and PSDs under turbulence wind excitation

    图 8  模态响应功率谱密度参数分析

    Figure 8.  Parameter analysis of PSDs under turbulence wind excitation

    图 9  失效概率及风向角对概率特征风速曲线的影响

    Figure 9.  Effects of failure probability and wind angle on PCWCs

    表  1  车体自振特性及振型描述

    Table  1.   Natural frequencies and modes of carbody

    阶数频率/Hz振型描述
    10.54绕车体下心侧滚
    20.86车体摇头
    30.94车体沉浮
    41.12车体点头
    51.20绕车体上心侧滚
    下载: 导出CSV
  • [1] CHRISTINA R, RUNG T, WU D. Computational modelling of cross-wind stability of high-speed trains[J]. European Congress on Computational Methods in Applied Sciences and Engineering, 2004(7): 24-28.
    [2] 航空鉄道事故調査委員会. 西日本旅客鉄道株式会社福知山線塚口駅~尼崎駅間列車脱線事故[M]. 东京: 航空·鉄道事故調査委員会, 2007.
    [3] 金学松,郭俊,肖新标,等. 高速列车安全运行研究的关键科学问题[J]. 工程力学,2009,26(增2): 8-22,105.

    JIN Xuesong, GUO Jun, XIAO Xinbiao, et al. Key scientific problems in the study on running safety of high speed trains[J]. Engineering Mechanics, 2009, 26(S2): 8-22,105.
    [4] 翟婉明, 夏禾. 列车-轨道-桥梁动力相互作用理论与工程应用[M]. 北京: 科学出版社, 2011.
    [5] YU M G, LIU J L, LIU D W, et al. Investigation of aerodynamic effects on the high-speed train exposed to longitudinal and lateral wind velocities[J]. Journal of Fluids and Structures, 2016, 61: 347-361. doi: 10.1016/j.jfluidstructs.2015.12.005
    [6] CHELI F, CORRADI R, TOMASINI G. Crosswind action on rail vehicles: a methodology for the estimation of the characteristic wind curves[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104/105/106: 248-255.
    [7] 国枝正春. 鉄道車両の転ぷくに関する力学的理論解析[J]. 鉄道技術研究報告,1972(2): 1-15.
    [8] 高广军. 强侧风作用下列车运行安全性研究[D]. 长沙: 中南大学, 2008.
    [9] BAKER C. A framework for the consideration of the effects of crosswinds on trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 123: 130-142. doi: 10.1016/j.jweia.2013.09.015
    [10] 严乃杰. 横向风作用下移动列车风场特性、气动荷载及倾覆危险性研究[D]. 成都: 西南交通大学, 2019.
    [11] YAN N J, CHEN X Z, LI Y L. Assessment of overturning risk of high-speed trains in strong crosswinds using spectral analysis approach[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 174: 103-118. doi: 10.1016/j.jweia.2017.12.024
    [12] WANG M, CHEN X Z, LI X Z, et al. A frequency domain analysis framework for assessing overturning risk of high-speed trains under crosswind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 202: 104196.1-104196.14.
    [13] 王开文. 车轮接触点迹线及轮轨接触几何参数的计算[J]. 西南交通大学学报,1984,19(1): 89-99.

    WANG Kaiwen. The track of wheel contact points and the calculation of wheel/rail geometric contact parameters[J]. Journal of Southwest Jiaotong University, 1984, 19(1): 89-99.
    [14] CARRARINI A. Reliability based analysis of the crosswind stability of railway vehicles[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(7): 493-509. doi: 10.1016/j.jweia.2006.10.001
    [15] TSI H. Technical specification for interoperability relating to the ‘rolling stock’ sub-system of the trans-european high-speed rail system[R]. Aberdeen: Official Journal of the European Union, 2008.
    [16] DIEDRICHS B, EKEQUIST M, STICHEL S, et al. Quasi-static modelling of wheel-rail reactions due to crosswind effects for various types of high-speed rolling stock[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2004, 218(2): 133-148. doi: 10.1243/0954409041319614
    [17] CHEN X Z, KAREEM A. Equivalent static wind loads for buffeting response of bridges[J]. Journal of Structural Engineering, 2001, 127(12): 1467-1475. doi: 10.1061/(ASCE)0733-9445(2001)127:12(1467)
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  392
  • HTML全文浏览量:  118
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-20
  • 修回日期:  2021-10-08
  • 网络出版日期:  2023-01-05
  • 刊出日期:  2021-10-27

目录

    /

    返回文章
    返回