• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

泡沫铝压缩试验及等效仿真模型研究

王佳铭 谭跃东 靳智慧 闫莉莹 纪程 李志刚 邵特立

王佳铭, 谭跃东, 靳智慧, 闫莉莹, 纪程, 李志刚, 邵特立. 泡沫铝压缩试验及等效仿真模型研究[J]. 西南交通大学学报, 2023, 58(1): 91-99, 116. doi: 10.3969/j.issn.0258-2724.20210563
引用本文: 王佳铭, 谭跃东, 靳智慧, 闫莉莹, 纪程, 李志刚, 邵特立. 泡沫铝压缩试验及等效仿真模型研究[J]. 西南交通大学学报, 2023, 58(1): 91-99, 116. doi: 10.3969/j.issn.0258-2724.20210563
WANG Jiaming, TAN Yuedong, JIN Zhihui, YAN Liying, JI Cheng, LI Zhigang, SHAO Teli. Study on Compression Test and Equivalent Simulation Model of Aluminum Foam[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 91-99, 116. doi: 10.3969/j.issn.0258-2724.20210563
Citation: WANG Jiaming, TAN Yuedong, JIN Zhihui, YAN Liying, JI Cheng, LI Zhigang, SHAO Teli. Study on Compression Test and Equivalent Simulation Model of Aluminum Foam[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 91-99, 116. doi: 10.3969/j.issn.0258-2724.20210563

泡沫铝压缩试验及等效仿真模型研究

doi: 10.3969/j.issn.0258-2724.20210563
基金项目: 中央高校基本科研业务费(2019JBM048);北京市自然科学基金-丰台轨道交通前沿研究联合基金(L201010)
详细信息
    作者简介:

    王佳铭(1994—),男,博士研究生,研究方向为冲击碰撞与人员损伤防护,E-mail:20116030@bjtu.edu.cn

    通讯作者:

    李志刚(1983—),男,副教授,研究方向为冲击碰撞与人员损伤防护,E-mail:zgli@bjtu.edu.cn

  • 中图分类号: V252.2

Study on Compression Test and Equivalent Simulation Model of Aluminum Foam

  • 摘要:

    为了研究泡沫铝结构在直升机耐坠性设计中的应用效果,本文基于万能材料试验机和霍普金森压杆分别对两种相对密度的闭孔泡沫铝在准静态(0.001 /s)和高应变率下(500 /s、1000 /s)的力学性能进行了测试;然后,建立了可反映应变率效应的泡沫铝等效有限元模型;最后,将泡沫铝等效模型应用于直升机驾驶舱耐坠性的仿真中,分析了置入不同密度泡沫铝等效模型后直升机受到的冲击和变形情况. 结果表明:泡沫铝的平台应力以及质量比吸能随相对密度、应变率的增加而增加,但密实化应变则相反;泡沫铝等效有限元模型与实验结果曲线保持一致,模型准确性较高;此外,通过置入两种密度的泡沫铝材料,驾驶舱地板的最大变形量分别减少了28%和73%,机身部件的承载压力平均减少了28%和42%,高密度泡沫铝承载能力更强,效果更好.

     

  • 图 1  高孔隙率泡沫铝试样及试件设计

    Figure 1.  Design of aluminum foam specimen with high porosity

    图 2  试验装置

    Figure 2.  Test apparatus

    图 3  不同密度的泡沫铝压缩应力-应变曲线

    Figure 3.  Stress-strain curves of aluminum foams with different densities

    图 4  不同密度的泡沫铝准静态压缩过程

    Figure 4.  Quasi-static compressive processes of aluminum foams with different densities

    图 5  相对密度及应变率对不同密度泡沫铝承载吸能的影响规律

    Figure 5.  Influence of relative density and strain rate on the load-carrying and energy absorption of aluminum foams with different densities

    图 6  泡沫铝等效模型示意

    Figure 6.  Equivalent FE model of aluminum foam

    图 7  泡沫铝本构拟合结果

    Figure 7.  Constitutive fitting results of aluminum foam

    图 8  对泡沫铝在0.001 /s下的应力-应变曲线缩放结果的拟合

    Figure 8.  Fitting on the scaling results of the stress-strain curve at 0.001 /s

    图 9  缩放系数随应变率变化标定结果

    Figure 9.  Calibrated results of scaling factors varying with strain rate

    图 10  仿真与实验结果对比

    Figure 10.  Simulation and experimental results for aluminum foam with low relative density

    图 11  直升机驾驶舱有限元模型

    Figure 11.  Finite element model of helicopter cockpit

    图 12  3种模型跌落仿真过程对比

    Figure 12.  Comparison of simulation results for the three models under dropping conditions

    图 13  驾驶舱底部最大变形量结果

    Figure 13.  Maximum deformation of the bottom of the cockpit

    图 14  驾驶舱垂向跌落仿真结果

    Figure 14.  Simulation results of the cockpit under dropping conditions

    表  1  不同密度泡沫铝压缩试验结果

    Table  1.   Test results of aluminum foams with different densities

    试件应变
    率/(s−1
    平台应

    /MPa
    密实化
    应变
    质量比吸能/
    (kJ·kg−1
    低密度
    试件
    0.0010.950.571.88
    5001.310.532.75
    10001.370.502.89
    高密度
    试件
    0.0013.800.554.24
    5004.730.495.36
    10004.850.485.42
    下载: 导出CSV

    表  2  不同密度的泡沫铝材料参数

    Table  2.   Material parameters of aluminum foam with different density

    密度 $ {\sigma }_{{\rm{p}}} $/MPa$ \gamma $$ {\varepsilon }_{{\rm{D}}} $$ \alpha $$ \beta $密度$ \rho / $
    (kg/m3
    弹性模量/MPa
    $ {E}_{{\rm{AAU}}}={E}_{{\rm{BBU}}}={E}_{{\rm{CCU}}} $
    剪切模量/MPa
    $ {G}_{{\rm{AAU}}}={G}_{{\rm{BBU}}}={G}_{{\rm{CCU}}} $
    应力应变
    曲线
    0.97−1.40.771.281.17216300300图7(a)
    4.34−10.10.828.461.23340800800图7(b)
    下载: 导出CSV

    表  3  应变率模型标定系数

    Table  3.   Calibrated coefficients of the strain-rate model

    泡沫铝 be相关系数(R2
    低密度5.969 × 1060.4850.999
    高密度2.112 × 1080.2480.992
    下载: 导出CSV
  • [1] GIBSON L J, ASHBY M F. Cellular solids[M]. Cambridge: Cambridge University Press, 1997.
    [2] 程帅,师莹菊,殷文骏,等. 泡沫铝内衬对抗内部爆炸钢筒变形的影响[J]. 爆炸与冲击,2020,40(7): 56-63. doi: 10.11883/bzycj-2019-0339

    CHENG Shuai, SHI Yingju, YIN Wenjun, et al. Influence of aluminum foam lining on deformation of steel cylinders subjected to internal blast loading[J]. Explosion and Shock Waves, 2020, 40(7): 56-63. doi: 10.11883/bzycj-2019-0339
    [3] 杨旭东,石建,程洁,等. 填加造孔剂法制备泡沫铝及其吸能性能[J]. 航空材料学报,2017,37(2): 55-62. doi: 10.11868/j.issn.1005-5053.2016.000117

    YANG Xudong, SHI Jian, CHENG Jie, et al. Fabrication of aluminum foam by space-holder method and the energy absorption properties[J]. Journal of Aeronautical Materials, 2017, 37(2): 55-62. doi: 10.11868/j.issn.1005-5053.2016.000117
    [4] 郭亚周,杨海,刘小川,等. 中低应变率下闭孔泡沫铝动态力学性能研究[J]. 振动与冲击,2020,39(3): 282-288.

    GUO Yazhou, YANG Hai, LIU Xiaochuan, et al. Dynamic mechanical properties of closed cell aluminum foam under medium and low strain rates[J]. Journal of Vibration and Shock, 2020, 39(3): 282-288.
    [5] 李忠献,张茂轩,师燕超. 闭孔泡沫铝的动态压缩性能试验研究[J]. 振动与冲击,2017,36(5): 1-6. doi: 10.13465/j.cnki.jvs.2017.05.001

    LI Zhongxian, ZHANG Maoxuan, SHI Yanchao. Tests for dynamic compressive performance of closed-cell aluminum foams[J]. Journal of Vibration and Shock, 2017, 36(5): 1-6. doi: 10.13465/j.cnki.jvs.2017.05.001
    [6] WANG P F, XU S L, LI Z B, et al. Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading[J]. Materials Science and Engineering: A, 2015, 620: 253-261. doi: 10.1016/j.msea.2014.10.026
    [7] 李雪艳,李志斌,张舵. 不同温度和应变率下的闭孔泡沫铝压缩力学性能[J]. 振动与冲击,2020,39(23): 17-20,29. doi: 10.13465/j.cnki.jvs.2020.23.003

    LI Xueyan, LI Zhibin, ZHANG Duo. Compression performance of closed-cell aluminium foam under different temperatures and strain rates[J]. Journal of Vibration and Shock, 2020, 39(23): 17-20,29. doi: 10.13465/j.cnki.jvs.2020.23.003
    [8] 甄映红,王展光. 不同温度下闭孔泡沫铝压缩性能研究[J]. 轻金属,2021(1): 52-57. doi: 10.13662/j.cnki.qjs.2021.01.012

    ZHEN Yinghong, WANG Zhanguang. Study on compression performance of closed-cell aluminum foam at different temperature[J]. Light Metals, 2021(1): 52-57. doi: 10.13662/j.cnki.qjs.2021.01.012
    [9] 王鹏飞,徐松林,胡时胜. 不同温度下泡沫铝压缩行为与变形机制探讨[J]. 振动与冲击,2013,32(5): 16-19. doi: 10.3969/j.issn.1000-3835.2013.05.004

    WANG Pengfei, XU Songlin, HU Shisheng. Compressive behavior and deformation mechanism of aluminum foam under different temperature[J]. Journal of Vibration and Shock, 2013, 32(5): 16-19. doi: 10.3969/j.issn.1000-3835.2013.05.004
    [10] 郭亚周,刘小川,白春玉,等. 机翼前缘局部填充泡沫铝抗鸟撞特性[J]. 科学技术与工程,2020,20(8): 3348-3355.

    GUO Yazhou, LIU Xiaochuan, BAI Chunyu, et al. Anti-bird impact characteristics of partially filled aluminum foaminthe leading edge of wing[J]. Science Technology and Engineering, 2020, 20(8): 3348-3355.
    [11] 翟希梅,孟令钊,王建皓. 泡沫铝填充6082-T6铝合金圆管构件轴压力学性能[J]. 哈尔滨工业大学学报,2021,53(4): 80-88. doi: 10.11918/202009001

    ZHAI Ximei, MENG Lingzhao, WANG Jianhao. Axial-crushing performance of aluminum foam-filled 6082-T6 aluminum alloy circular tube[J]. Journal of Harbin Institute of Technology, 2021, 53(4): 80-88. doi: 10.11918/202009001
    [12] 高强,王良模,王源隆,等. 椭圆形泡沫填充薄壁管斜向冲击吸能特性仿真研究[J]. 振动与冲击,2017,36(2): 201-206,220. doi: 10.13465/j.cnki.jvs.2017.02.033

    GAO Qiang, WANG Liangmo, WANG Yuanlong, et al. Energy-absorbing characteristics of foam-filled oval tubes under oblique impact[J]. Journal of Vibration and Shock, 2017, 36(2): 201-206,220. doi: 10.13465/j.cnki.jvs.2017.02.033
    [13] KıLıÇASLAN C. Numerical crushing analysis of aluminum foam-filled corrugated single-and double-circular tubes subjected to axial impact loading[J]. Thin-Walled Structures, 2015, 96: 82-94. doi: 10.1016/j.tws.2015.08.009
    [14] 王巍,安子军,彭春彦,等. 闭孔泡沫材料3-D几何建模及力学性能分析[J]. 塑性工程学报,2017,24(4): 194-200.

    WANG Wei, AN Zijun, PENG Chunyan, et al. 3-D geometry modeling and mechanical properties analysis of closed-cell foams[J]. Journal of Plasticity Engineering, 2017, 24(4): 194-200.
    [15] 郭亚周,杨海,刘小川,等. 闭孔泡沫铝在动态加载下的压缩力学行为研究[J]. 振动工程学报,2020,33(2): 338-346. doi: 10.16385/j.cnki.issn.1004-4523.2020.02.014

    GUO Yazhou, YANG Hai, LIU Xiaochuan, et al. Compressive mechanical behavior of closed cell Aluminum foam under dynamic loading[J]. Journal of Vibration Engineering, 2020, 33(2): 338-346. doi: 10.16385/j.cnki.issn.1004-4523.2020.02.014
    [16] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料延性试验多孔状和蜂窝状金属压缩试验方法: GB/T 31930—2015[S]. 北京: 中国标准出版社, 2016.
    [17] SHEN J H, LU G X, RUAN D. Compressive behaviour of closed-cell aluminium foams at high strain rates[J]. Composites Part B: Engineering, 2010, 41(8): 678-685. doi: 10.1016/j.compositesb.2010.07.005
    [18] Livermore Software Technology Corporation (LSTC). LS-DYNA keyword user’s manual[M]. California: [s.n.], 2013, 3: 1-151.
    [19] HANSSEN A G, HOPPERSTAD O S, LANGSETH M, et al. Validation of constitutive models applicable to aluminium foams[J]. International Journal of Mechanical Sciences, 2002, 44(2): 359-406. doi: 10.1016/S0020-7403(01)00091-1
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  743
  • HTML全文浏览量:  187
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-20
  • 修回日期:  2021-11-23
  • 网络出版日期:  2022-10-25
  • 刊出日期:  2022-01-14

目录

    /

    返回文章
    返回