• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

智能网联混合交通流稳定性解析方法综述

蒋阳升 顾秋凡 姚志洪

蒋阳升, 顾秋凡, 姚志洪. 智能网联混合交通流稳定性解析方法综述[J]. 西南交通大学学报, 2022, 57(5): 927-940. doi: 10.3969/j.issn.0258-2724.20210560
引用本文: 蒋阳升, 顾秋凡, 姚志洪. 智能网联混合交通流稳定性解析方法综述[J]. 西南交通大学学报, 2022, 57(5): 927-940. doi: 10.3969/j.issn.0258-2724.20210560
JIANG Yangsheng, GU Qiufan, YAO Zhihong. Review of Stability Analysis Method for Mixed Traffic Flow with Connected Automated Vehicles[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 927-940. doi: 10.3969/j.issn.0258-2724.20210560
Citation: JIANG Yangsheng, GU Qiufan, YAO Zhihong. Review of Stability Analysis Method for Mixed Traffic Flow with Connected Automated Vehicles[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 927-940. doi: 10.3969/j.issn.0258-2724.20210560

智能网联混合交通流稳定性解析方法综述

doi: 10.3969/j.issn.0258-2724.20210560
基金项目: 国家自然科学基金(52002339);四川省科技计划(2022YFG0152,2021YJ0535,2020YFH0026 );广西科技计划(2021AA01007AA);中央高校基本科研业务费专项资金(2682021CX058)
详细信息
    作者简介:

    蒋阳升(1975—),男,教授,博士生导师,研究方向为交通系统建模与优化,E-mail:jiangyangsheng@swjtu.cn

  • 中图分类号: U495

Review of Stability Analysis Method for Mixed Traffic Flow with Connected Automated Vehicles

  • 摘要:

    交通流稳定性分析是研究交通拥堵形成机理、车队队列控制的基础,面向智能网联环境下的混合交通流队列线性稳定性分析已成为近年来的研究热点. 根据受到的扰动大小和范围,介绍了线性稳定性、非线性稳定性、局部稳定性和队列稳定性的相关概念,并指出了交通流队列稳定性的基本判别准则. 基于控制理论,回顾了交通流车队队列线性稳定性条件的经典解析方法,其中,特征方程法评估了交通流内部扰动的增长速度,传递函数法依托于拉普拉斯变换构建了扰动的传递关系. 从经典跟驰模型、考虑时延的跟驰模型和考虑多前车驾驶信息反馈的跟驰模型出发,系统分析并总结了国内外学者对于混合交通流稳定性问题的研究现状,同时回顾了交通流稳定性理论研究在车队队列控制等方面的实验和工程应用. 最后,展望了混合交通流稳定性分析领域的研究前景,指出了在后车跟驰行为、智能网联汽车的交互协同、复杂混合交通流等几个方面是今后需要重点研究的领域.

     

  • 图 1  车辆跟驰运动示意

    Figure 1.  Schematic of car-following motion

    图 2  速度扰动传递函数

    Figure 2.  Transfer function of velocity disturbance

    图 3  经典跟驰模型下的稳定性

    Figure 3.  Stability of basic car-following model

    图 4  多车交互跟驰运动示意

    Figure 4.  Schematic of multivehicle interactive car-following motion

    表  1  智能网联环境下的混合交通流稳定性分析文献总结

    Table  1.   Literature review on stability analysis for mixed traffic flow with connected automated vehicles

    跟驰模型文献车辆类型主要研究方法
    经典跟驰模型[43]ACC + HDV李雅普诺夫稳定性条件
    [44]低带宽 + 中带宽 + 高带宽车辆传递函数法
    [45]ACC + CACC特征方程法
    [46]CACC + ACC + HDVWard混合交通流稳定性条件转化为
    一元二次方程,研究其特性
    [47]CACC + ACC + HDV传递函数法
    [48]CAV + HDV特征方程法
    [49]CAV + HDV特征方程法
    考虑时延的跟驰模型[50]常规车辆 + 半自动车辆传递函数法
    [51]HDV + AV特征方程法
    [34]CAV + HDV特征方程法
    [52]CAV + HDV特征方程法
    [53]CAV + DCAV + HDV特征方程法
    [54]CAV + HDV传递函数法
    [55]CAV + HDV传递函数法
    [56]CACC + ACC + HDV传递函数法
    考虑多前车驾驶
    信息反馈的跟驰模型
    [57]CAV + HDV特征方程法
    [58]CV + HDV特征方程法
    [59]CCC + HDV传递函数法
    [60]CCC + HDV传递函数法
    [61]CAV + HDV特征方程法
    [62]CAV + HDV传递函数法
    [63]CAV + HDV传递函数法
    [64]CAV + HDV传递函数法
    [65]CAV + HDV传递函数法
    [66]CAV + HDV队列稳定性定义
    注:AV (autonomous vehicle)为自动驾驶车辆;CV (connected vehicle)为网联人工驾驶车辆;CCC (connected cruise control)为连通巡航控制车辆.
    下载: 导出CSV
  • [1] 陈喜群, 杨新苗, 史其信, 等. 智能驾驶员模型及稳定性分析[C]//第五届中国智能交通年会暨第六届国际节能与新能源汽车创新发展论坛优秀论文集(上册): 智能交通. 北京: 电子工业出版社, 2009: 96-101.
    [2] PUEBOOBPAPHAN R, VAN AREM B. Driver and vehicle characteristics and platoon and traffic flow stability: understanding the relationship for design and assessment of cooperative adaptive cruise control[J]. Transportation Research Record, 2010, 2189(1): 89-97. doi: 10.3141/2189-10
    [3] LEUTZBACH W. Introduction to the theory of traffic flow[M]. Heidelberg: Springer, 1988: 39-193.
    [4] WILSON R E, WARD J A. Car-following models:fifty years of linear stability analysis: a mathematical perspective[J]. Transportation Planning and Technology, 2011, 34(1): 3-18. doi: 10.1080/03081060.2011.530826
    [5] SHLADOVER S E. Longitudinal control of automated guideway transit vehicles within platoons[J]. Journal of Dynamic Systems, Measurement, and Control, 1978, 100(4): 302-310. doi: 10.1115/1.3426382
    [6] SUN J D, ZHENG Z, SUN J. Stability analysis methods and their applicability to car-following models in conventional and connected environments[J]. Transportation Research Part B: Methodological, 2018, 109: 212-237. doi: 10.1016/j.trb.2018.01.013
    [7] 王炜, 陈峻, 过秀成, 等. 交通工程学[M]. 3版. 南京: 东南大学出版社, 2019: 115.
    [8] BANSAL P, KOCKELMAN K M. Forecasting Americans' long-term adoption of connected and autonomous vehicle technologies[J]. Transportation Research Part A: Policy and Practice, 2017, 95: 49-63. doi: 10.1016/j.tra.2016.10.013
    [9] TREIBER M, HENNECKE A, HELBING D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E:Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62(2): 1805-1824.
    [10] BANDO M, HASEBE K, NAKAYAMA A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 1995, 51(2): 1035-1042. doi: 10.1103/PhysRevE.51.1035
    [11] JIANG R, WU Q, ZHU Z. Full velocity difference model for a car-following theory[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2001, 64(1): 017101.1-017101.4.
    [12] LIU X, GOLDSMITH A, MAHAL S S, et al. Effects of communication delay on string stability in vehicle platoons[C]// Proceedings of 2001 IEEE Intelligent Transportation Systems Conference. Oakland: IEEE, 2001: 625-630.
    [13] XIAO L Y, DARBHA S, GAO F. Stability of string of adaptive cruise control vehicles with parasitic delays and lags[C]//Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems. Beijing: IEEE, 2008: 1101-1106.
    [14] RAJAMANI R, SHLADOVER S E. An experimental comparative study of autonomous and co-operative vehicle-follower control systems[J]. Transportation Research Part C: Emerging Technologies, 2001, 9(1): 15-31. doi: 10.1016/S0968-090X(00)00021-8
    [15] SCHAKEL W J, AREM B V, NETTEN B D. Effects of cooperative adaptive cruise control on traffic flow stability[C]//Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems. Funchal: IEEE, 2010: 759-764.
    [16] CHEN J Z, ZHOU Y, LIANG H. Effects of ACC and CACC vehicles on traffic flow based on an improved variable time headway spacing strategy[J]. IET Intelligent Transport Systems, 2019, 13(9): 1365-1373. doi: 10.1049/iet-its.2018.5296
    [17] ZHENG F F, LIU C, LIU X B, et al. Analyzing the impact of automated vehicles on uncertainty and stability of the mixed traffic flow[J]. Transportation Research Part C:Emerging Technologies, 2020, 112: 203-219. doi: 10.1016/j.trc.2020.01.017
    [18] MILANÉS V, SHLADOVER S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 285-300. doi: 10.1016/j.trc.2014.09.001
    [19] VAN AREM B, VAN DRIEL C J G, VISSER R. The impact of cooperative adaptive cruise control on traffic-flow characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4): 429-436. doi: 10.1109/TITS.2006.884615
    [20] BAYAR B, SAJADI-ALAMDARI S A, VITI F, et al. Impact of different spacing policies for adaptive cruise control on traffic and energy consumption of electric vehicles[C]//Proceedings of 2016 24th Mediterranean Conference on Control and Automation (MED). Athens: IEEE, 2016: 1349-1354.
    [21] ZHAO L, SUN J. Simulation framework for vehicle platooning and car-following behaviors under connected-vehicle environment[J]. Procedia—Social and Behavioral Sciences, 2013, 96: 914-924. doi: 10.1016/j.sbspro.2013.08.105
    [22] TREIBER M, KESTING A. Traffic flow dynamics: data, models and simulation[M]. Berlin: Springer, 2013: 273-274.
    [23] 俞立. 现代控制理论[M]. 北京: 清华大学出版社, 2007: 55.
    [24] RICHARD C D, ROBERT H B. 现代控制系统[M]. 谢红卫, 邹逢兴, 张明, 等译. 8版. 北京: 高等教育出版社, 2001: 35.
    [25] NGODUY D. Effect of the car-following combinations on the instability of heterogeneous traffic flow[J]. Transportmetrica B: Transport Dynamics, 2015, 3(1): 44-58. doi: 10.1080/21680566.2014.960503
    [26] YANG D, ZHU L, PU Y. Model and stability of the traffic flow consisting of heterogeneous drivers[J]. Journal of Computational and Nonlinear Dynamics, 2015, 10(3): 031001.1-031001.10.
    [27] YANG D, JIN P, PU Y, et al. Stability analysis of the mixed traffic flow of cars and trucks using heterogeneous optimal velocity car-following model[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 395: 371-383. doi: 10.1016/j.physa.2013.10.017
    [28] 杨达,祝俪菱,蒲云,等. 两种驾驶方式构成的异质交通流稳定性研究[J]. 北京理工大学学报,2013,33(11): 1140-1144,1150. doi: 10.3969/j.issn.1001-0645.2013.11.008

    YANG Da, ZHU Liling, PU Yun, et al. Stability analysis of the heterogeneous traffic flow mixed by two driving styles[J]. Transactions of Beijing Institute of Technology, 2013, 33(11): 1140-1144,1150. doi: 10.3969/j.issn.1001-0645.2013.11.008
    [29] SURYA H R, RAJU N, ARKATKAR S S. Stability analysis of mixed traffic flow using car-following models on trajectory data[C]//Proceedings of 2021 International Conference on Communication Systems & Networks (COMSNETS). Bangalore: IEEE, 2021: 656-661.
    [30] LIU L, ZHU L, YANG D. Modeling and simulation of the car-truck heterogeneous traffic flow based on a nonlinear car-following model[J]. Applied Mathematics and Computation, 2016, 273: 706-717. doi: 10.1016/j.amc.2015.10.032
    [31] MASON A D, WOODS A W. Car-following model of multispecies systems of road traffic[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 1997, 55(3): 2203-2214. doi: 10.1103/PhysRevE.55.2203
    [32] LI Z P, XU X, XU S Z, et al. A heterogeneous traffic flow model consisting of two types of vehicles with different sensitivities[J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 42: 132-145. doi: 10.1016/j.cnsns.2016.05.016
    [33] WARD J A. Heterogeneity, lane-changing and instability in traffic: a mathematical approach[D]. Bristol: University of Bristol, 2009.
    [34] NGODUY D. Analytical studies on the instabilities of heterogeneous intelligent traffic flow[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(10): 2699-2706. doi: 10.1016/j.cnsns.2013.02.018
    [35] TALEBPOUR A, MAHMASSANI H S. Influence of connected and autonomous vehicles on traffic flow stability and throughput[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 143-163. doi: 10.1016/j.trc.2016.07.007
    [36] TALEBPOUR A, MAHMASSANI H S, HAMDAR S H. Effect of information availability on stability of traffic flow: percolation theory approach[J]. Transportation Research Procedia, 2017, 23: 81-100. doi: 10.1016/j.trpro.2017.05.006
    [37] 秦严严,王昊,王炜,等. 混有协同自适应巡航控制车辆的异质交通流稳定性解析与基本图模型[J]. 物理学报,2017,66(9): 257-265.

    QIN Yanyan, WANG Hao, WANG Wei, et al. Stability analysis and fundamental diagram of heterogeneous traffic flow mixed with cooperative adaptive cruise control vehicles[J]. Acta Physica Sinica, 2017, 66(9): 257-265.
    [38] 秦严严,王昊,王炜. 网联辅助驾驶混合交通流稳定性及安全性分析[J]. 东南大学学报(自然科学版),2018,48(1): 188-194. doi: 10.3969/j.issn.1001-0505.2018.01.029

    QIN Yanyan, WANG Hao, WANG Wei. Analysis on stability and safety for mixed traffic flow with connected auxiliary driving[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(1): 188-194. doi: 10.3969/j.issn.1001-0505.2018.01.029
    [39] YAO Z H, HU R, WANG Y, et al. Stability analysis and the fundamental diagram for mixed connected automated and human-driven vehicles[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 533: 121931.1-121931.16.
    [40] 蒋阳升,胡蓉,姚志洪,等. 智能网联车环境下异质交通流稳定性及安全性分析[J]. 北京交通大学学报,2020,44(1): 27-33. doi: 10.11860/j.issn.1673-0291.20190045

    JIANG Yangsheng, HU Rong, YAO Zhihong, et al. Stability and safety analysis for heterogeneous traffic flow composed of intelligent and connected vehicles[J]. Journal of Beijing Jiaotong University, 2020, 44(1): 27-33. doi: 10.11860/j.issn.1673-0291.20190045
    [41] YAO Z H, HU R, JIANG Y S, et al. Stability and safety evaluation of mixed traffic flow with connected automated vehicles on expressways[J]. Journal of Safety Research, 2020, 75: 262-274. doi: 10.1016/j.jsr.2020.09.012
    [42] CHANG X, LI H, RONG J, et al. Analysis on traffic stability and capacity for mixed traffic flow with platoons of intelligent connected vehicles[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 557: 124829.1-124829.14.
    [43] WANG J M, RAJAMANI R. Adaptive cruise control system design and its impact on highway traffic flow[C]//Proceedings of the 2002 American Control Conference. Anchorage: IEEE, 2002: 3690-3695.
    [44] SHAW E, HEDRICK J K. String stability analysis for heterogeneous vehicle strings[C]//Proceedings of the American Control Conference. New York: IEEE, 2007: 3118-3125.
    [45] WANG M, TREIBER M, DAAMEN W, et al. Modelling supported driving as an optimal control cycle:framework and model characteristics[J]. Transportation Research Part C:Emerging Technologies, 2013, 36: 547-563. doi: 10.1016/j.trc.2013.06.012
    [46] WANG H, QIN Y Y, WANG W, et al. Stability of CACC-manual heterogeneous vehicular flow with partial CACC performance degrading[J]. Transportmetrica B:Transport Dynamics, 2019, 7(1): 788-813. doi: 10.1080/21680566.2018.1517058
    [47] 王昊,秦严严. 网联车混合交通流渐进稳定性解析方法[J]. 哈尔滨工业大学学报,2019,51(3): 88-91. doi: 10.11918/j.issn.0367-6234.201711066

    WANG Hao, QIN Yanyan. Asymptotic stability analysis of traffic flow mixed with connected vehicles[J]. Journal of Harbin Institute of Technology, 2019, 51(3): 88-91. doi: 10.11918/j.issn.0367-6234.201711066
    [48] LI T L, NGODUY D, HUI F, et al. A car-following model to assess the impact of V2V messages on traffic dynamics[J]. Transportmetrica B:Transport Dynamics, 2020, 8(1): 150-165. doi: 10.1080/21680566.2020.1728591
    [49] NGODUY D. Platoon-based macroscopic model for intelligent traffic flow[J]. Transportmetrica B:Transport Dynamics, 2013, 1(2): 153-169. doi: 10.1080/21680566.2013.826150
    [50] HELBING D, TILCH B. Generalized force model of traffic dynamics[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 1998, 58(1): 133-138. doi: 10.1103/PhysRevE.58.133
    [51] MAHAL S. Effects of communication delays on string stability in an AHS environment[D]. Berkeley: University of California, Berkeley, 2000.
    [52] SAIFUZZAMAN M, ZHENG Z D. Incorporating human-factors in car-following models:a review of recent developments and research needs[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 379-403. doi: 10.1016/j.trc.2014.09.008
    [53] SHARMA A, ALI Y, SAIFUZZAMAN M, et al. Human factors in modelling mixed traffic of traditional, connected, and automated vehicles[C]//Proceedings of 8th International Conference on Applied Human Factors and Ergonomics. Los Angeles: Springer, 2017: 262-273.
    [54] BOSE A, IOANNOU P. Analysis of traffic flow withmixed manual and semi-automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2003, 4(4): 173-188. doi: 10.1109/TITS.2003.821340
    [55] ZHU W X, ZHANG H M. Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model[J]. Physica A:Statistical Mechanics and Its Applications, 2018, 496: 274-285. doi: 10.1016/j.physa.2017.12.103
    [56] XIE D F, ZHAO X M, HE Z B. Heterogeneous traffic mixing regular and connected vehicles:modeling and stabilization[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2060-2071. doi: 10.1109/TITS.2018.2857465
    [57] YAO Z, XU T, JIANG Y, et al. Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time[J]. Physica A:Statistical Mechanics and Its Applications, 2021, 561: 125218.1-125218.11.
    [58] ZHOU J, ZHU F. Analytical analysis of the effect ofmaximum platoon size of connected and automated vehicles[J]. Transportation Research Part C:Emerging Technologies, 2021, 122: 102882.1-102882.21.
    [59] ZHOU Y, AHN S, WANG M, et al. Stabilizing mixed vehicular platoons with connected automated vehicles:an H-infinity approach[J]. Transportation Research Part B: Methodological, 2020, 132: 152-170. doi: 10.1016/j.trb.2019.06.005
    [60] 许庆,王嘉伟,王建强,等. 网联通信时延下的混合队列控制特性分析[J]. 交通信息与安全,2021,39(1): 128-136,173. doi: 10.3963/j.jssn.1674-4861.2021.01.015

    XU Qing, WANG Jiawei, WANG Jianqiang, et al. A performance analysis of mixed platoon control under communication delay[J]. Journal of Transport Information and Safety, 2021, 39(1): 128-136,173. doi: 10.3963/j.jssn.1674-4861.2021.01.015
    [61] JIN S, SUN D H, ZHAO M, et al. Modeling and stability analysis of mixed traffic with conventional and connected automated vehicles from cyber physical perspective[J]. Physica A:Statistical Mechanics and Its Applications, 2020, 551: 124217.1-124217.15. doi: 10.1016/j.physa.2020.124217
    [62] WANG S Y, YU B, WU M Y. MVCM car-following model for connected vehicles and simulation-based traffic analysis in mixed traffic flow[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(6): 5267-5274.
    [63] GE J I, OROSZ G. Dynamics of connected vehicle systems with delayed acceleration feedback[J]. Transportation Research Part C: Emerging Technologies, 2014, 46: 46-64. doi: 10.1016/j.trc.2014.04.014
    [64] ZHANG L J, OROSZ G. Motif-based design for connected vehicle systems in presence of heterogeneous connectivity structures and time delays[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(6): 1638-1651. doi: 10.1109/TITS.2015.2509782
    [65] IOANNOU P, XU Z. Throttle and brake control systems for automatic vehicle following[J]. Journal of Intelligent Transportation Systems, 1994, 1(4): 345-377. doi: 10.1080/10248079408903805
    [66] 秦严严,王昊,冉斌. 考虑多前车反馈的智能网联车辆跟驰模型[J]. 交通运输系统工程与信息,2018,18(3): 48-54.

    QIN Yanyan, WANG Hao, RAN Bin. Car-following model of connected and autonomous vehicles considering multiple feedbacks[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3): 48-54.
    [67] 秦严严,王昊. 智能网联车辆交通流优化对交通安全的改善[J]. 中国公路学报,2018,31(4): 202-210. doi: 10.3969/j.issn.1001-7372.2018.04.024

    QIN Yanyan, WANG Hao. Improving traffic safety via traffic flow optimization of connected and automated vehicles[J]. China Journal of Highway and Transport, 2018, 31(4): 202-210. doi: 10.3969/j.issn.1001-7372.2018.04.024
    [68] QIN Y, WANG H. Stability analysis of connected vehicular platoon with multiple delayed feedbacks[C]//Proceedings of the 97rd Annual Meeting of the Transportation Research Board. Washington D C: TRB Committee, 2018: 01660314.1-01660314.7.
    [69] QIN Y Y, WANG H. Analytical framework of string stability of connected and autonomous platoons with electronic throttle angle feedback[J]. Transportmetrica A: Transport Science, 2021, 17(1): 59-80. doi: 10.1080/23249935.2018.1518964
    [70] QIN Y Y, WANG H, RAN B. Stability analysis of connected and automated vehicles to reduce fuel consumption and emissions[J]. Journal of Transportation Engineering, Part A: Systems, 2018, 144(11): 04018068.1-04018068.9.
    [71] JIA D, NGODUY D, VU H L. A multiclass microscopic model for heterogeneous platoon with vehicle-to-vehicle communication[J]. Transportmetrica B: Transport Dynamics, 2019, 7(1): 311-335. doi: 10.1080/21680566.2018.1434021
    [72] NOWAKOWSKI C, SHLADOVER S E, LU X Y, et al. Cooperative adaptive cruise control (CACC) for truck platooning: operational concept alternatives[R/OL]. Berkeley: California Partners for Advanced Transportation Technology, 2015. [2021-06-25]. https://path.berkeley.edu/sites/default/files/cacc_truck_platooning_conops_v10.pdf.
    [73] LI Y F, CHEN W B, PEETA S, et al. Platoon control of connected multi-vehicle systems under V2X communications: design and experiments[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 1891-1902. doi: 10.1109/TITS.2019.2905039
    [74] GUO G, WANG Q. Fuel-efficient en route speed planning and tracking control of truck platoons[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 3091-3103. doi: 10.1109/TITS.2018.2872607
    [75] NAKAYAMA A, SUGIYAMA Y, HASEBE K. Effect of looking at the car that follows in an optimal velocity model of traffic flow[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2002, 65(1): 016112.1-016112.6.
    [76] HASEBE K, NAKAYAMA A, SUGIYAMA Y. Dynamical model of a cooperative driving system for freeway traffic[J]. Physical Review E:Statistical, Nonlinear, and Soft Matter Physics, 2003, 68(2): 026102.1-026102.6.
    [77] GE H X, DAI S Q, DONG L Y, et al. Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application[J]. Physical Review E: Statistical, Nonlinear,and Soft Matter Physics, 2004, 70(6): 066134.1-066134.6.
    [78] GE H X, ZHU H B, DAI S Q. Effect of looking backward on traffic flow in a cooperative driving car following model[J]. The European Physical Journal B:Condensed Matter and Complex Systems, 2006, 54(4): 503-507. doi: 10.1140/epjb/e2007-00014-x
    [79] 李克强,戴一凡,李升波,等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报,2017,8(1): 1-14. doi: 10.3969/j.issn.1674-8484.2017.01.001

    LI Keqiang, DAI Yifan, LI Shengbo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 1-14. doi: 10.3969/j.issn.1674-8484.2017.01.001
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  431
  • HTML全文浏览量:  2137
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-09
  • 修回日期:  2022-01-22
  • 网络出版日期:  2022-09-01
  • 刊出日期:  2022-03-31

目录

    /

    返回文章
    返回