• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

大跨PC连续刚构桥抗震研究进展综述

王东升 童磊 王荣霞 孙治国

王东升, 童磊, 王荣霞, 孙治国. 大跨PC连续刚构桥抗震研究进展综述[J]. 西南交通大学学报, 2023, 58(3): 511-526. doi: 10.3969/j.issn.0258-2724.20210529
引用本文: 王东升, 童磊, 王荣霞, 孙治国. 大跨PC连续刚构桥抗震研究进展综述[J]. 西南交通大学学报, 2023, 58(3): 511-526. doi: 10.3969/j.issn.0258-2724.20210529
WANG Dongsheng, TONG Lei, WANG Rongxia, SUN Zhiguo. Review on Advances in Seismic Research of Large-Span Prestressed-Concrete Continuous Rigid-Frame Bridges[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 511-526. doi: 10.3969/j.issn.0258-2724.20210529
Citation: WANG Dongsheng, TONG Lei, WANG Rongxia, SUN Zhiguo. Review on Advances in Seismic Research of Large-Span Prestressed-Concrete Continuous Rigid-Frame Bridges[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 511-526. doi: 10.3969/j.issn.0258-2724.20210529

大跨PC连续刚构桥抗震研究进展综述

doi: 10.3969/j.issn.0258-2724.20210529
基金项目: 国家自然科学基金(51778206)
详细信息
    作者简介:

    王东升(1974—),男,教授,博士,研究方向为桥梁及结构工程抗震,E-mail: dswang@hebut.edu.cn

  • 中图分类号: U442.55

Review on Advances in Seismic Research of Large-Span Prestressed-Concrete Continuous Rigid-Frame Bridges

  • 摘要:

    我国已建设大量的大跨PC (prestressed concrete)连续刚构桥,其墩高可达百米及以上,存在遭受强震的可能,尤其是在西部高地震风险区,连续刚构桥主墩与主梁是刚性连接,主梁与桥墩共同承担地震力. 为促进刚构桥的抗震研究,首先,梳理了国内外近期经受地震考验的几座刚构桥的震害表现;然后,从抗震理论及模型试验、减隔震(耗能)设计和震后修复等方面,对连续刚构桥桥墩、上部结构、基础等主要构件以及全桥整体抗震性能等热点问题进行了评述,刚构桥具有良好的抗震性能,高阶效应及墩梁固结处纵桥向弯矩对桥墩地震反映影响较大,模型试验及理论分析中主梁开裂及损伤问题易被忽视,低墩或双柱墩刚构桥已展开墩底及基础隔震研究;最后,对未来可开展研究方向进行了探讨,强震下箱梁的开裂机理及损伤控制,基于新型材料及耗能构件组成的高墩,基础隔震及高墩底部隔震的实用技术,箱梁及空心墩的地震损伤识别及震后修复,(近)跨断层地震作用下刚构桥的渐进倒塌机理与防止.

     

  • 图 1  刚构桥的震害

    Figure 1.  Seismic damage of prestressed concrete continuous rigid-frame bridges

    图 2  东海湾大桥桥墩构造[14](单位:cm)

    Figure 2.  Pier structure of East Bay Bridge[14](unit:cm)

    图 3  South Rangitikei桥摇摆结构[34]

    Figure 3.  Rocking structure in South Rangitikei bridge[34]

    图 4  桥墩水平位移比[6]

    Figure 4.  Horizontal displacement ratio of piers[6]

    图 5  蝶形腹板刚构桥

    Figure 5.  Continuous rigid-frame bridge with butterfly webs

    图 6  钢桁腹板PC刚构桥

    Figure 6.  Prestressed concrete continuous rigid-frame bridge with steel truss webs

    图 7  主梁耗能装置内部构造[61]

    Figure 7.  Internal structure of girder energy dissipation device[61]

    图 8  PC连续刚构桥塑性区域[76]

    Figure 8.  Plastic hinge region of prestressed concrete continuous rigid-frame bridge [76]

    图 9  隔震套管

    Figure 9.  Isolation casing

    表  1  发生震害的刚构桥基本信息

    Table  1.   Basic information of continuous rigid-frame bridges damaged in earthquakes m

    大桥名称跨径主墩墩高
    能登岛大桥75.0 + 108.5 + 75.024.4/24.4
    庙子坪特大桥125.0 + 220.0 + 125.0102.5/99.5
    阿苏长阳大桥39.3 + 91.0 + 91.0 + 53.337.0/68.0/33.0
    注:能登岛大桥跨径及墩高为估算值.
    下载: 导出CSV
  • [1] WANG H L, XIE C L, LIU D, et al. Continuous reinforced concrete rigid-frame bridges in China[J]. Practice Periodical on Structural Design and Construction, 2019, 24(2): 05019002.1-05019002.10.
    [2] TONG L, WANG R, WANG D. Seismic cracking mechanism and control for pre-stressed concrete box girders of continuous rigid-frame bridges: Miaoziping bridge in Wenchuan earthquake as an example[J]. Advances in Bridge Engineering, 2021, 2(17): 1-25.
    [3] 陈乐生. 汶川地震公路震害调查·桥梁[M]. 北京: 人民交通出版社, 2012.
    [4] 竹田周平, 幸左賢二. 2007年能登半島地震で被災を受けた能登島大橋RC橋脚の被害について[C]//近年の国内外で発生した大地震の記録と課題に関するシンポジウム. 東京: 土木学会, 2010: 29-32.
    [5] 国土技術政策総合研究所. 平成19年(2007年)能登半島地震災害調査報告[R]. 東京: 土木研究所, 2008.
    [6] 今村隆浩. 熊本地震により被災した阿蘇長陽大橋の復旧[J]. 九州技報,2018,62(3): 24-30.
    [7] 国土技術政策総合研究所. 熊本地震土木施設被害調査報告[R]. 東京: 土木研究所, 2017.
    [8] 孔宪京,周扬,邹德高,等. 汶川地震紫坪铺面板堆石坝地震波输入研究[J]. 岩土力学,2012,33(7): 2110-2116.

    KONG XianJing, ZHOU Yang, ZOU Degao, et al. Study of seismic wave input of Zipingpu concrete face rockfill dam during Wenchuan earthquake[J]. Rock and Soil Mechanics, 2012, 33(7): 2110-2116.
    [9] HUNG C, LIN G W, SYU H S, et al. Analysis of the Aso-bridge landslide during the 2016 Kumamoto earthquakes in Japan[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(4): 1439-1449. doi: 10.1007/s10064-017-1103-7
    [10] SUN Z G, WANG D S, WANG T, et al. Investigation on seismic behavior of bridge piers with thin-walled rectangular hollow section using quasi-static cyclic tests[J]. Engineering Structures, 2019, 200: 109708.1-109708.13. doi: 10.1016/j.engstruct.2019.109708
    [11] 陈爱军,彭容新,王解军,等. 大跨连续刚构桥双肢薄壁墩抗震性能研究[J]. 振动与冲击,2020,39(1): 1-7.

    CHEN Aijun, PENG Rongxin, WANG Jiejun, et al. Aseismic performance of double-limb thin-walled piers of a large-span continuous rigid frame bridge[J]. Journal of Vibration and Shock, 2020, 39(1): 1-7.
    [12] 占玉林,宋瑞年,胡靖,等. 钢管混凝土组合格构柱高墩的弯曲性能研究[J]. 建筑结构学报,2013,34(增1): 240-245.

    ZHAN Yulin, SONG Ruinian, HU Jing, et al. Research of bending properties of high pier made of concrete-filled steel tube laced columns[J]. Journal of Building Structures, 2013, 34(S1): 240-245.
    [13] SUN Z G, WANG D S, GUO X, et al. Lessons learned from the damaged Huilan interchange in the 2008 Wenchuan earthquake[J]. Journal of Bridge Engineering, 2012, 17(1): 15-24. doi: 10.1061/(ASCE)BE.1943-5592.0000210
    [14] HINES E, DAZIO A, SEIBLE F. Structural testing of New East Bay Skyway piers[J]. ACI Structural Journal, 2006, 103(1): 103-112.
    [15] WEI K, ZHANG J R, QIN S Q. Experimental and numerical assessment into frequency domain dynamic response of deep water rigid-frame bridge[J]. Journal of Earthquake Engineering, 2019, 26(12): 1-24.
    [16] LIU Y, MEI Z, WU B, et al. Seismic behaviour and failure-mode-prediction method of a reinforced-concrete rigid-frame bridge with thin-walled tall piers: investigation by model-updating hybrid test[J]. Engineering Structures, 2020, 208: 110302.1-110302.11. doi: 10.1016/j.engstruct.2020.110302
    [17] MEI Z, WU B, BURSI O S, et al. Hybrid simulation with online model updating: application to a reinforced concrete bridge endowed with tall piers[J]. Mechanical Systems and Signal Processing, 2019, 123: 533-553. doi: 10.1016/j.ymssp.2019.01.009
    [18] 王宇航,王维,周绪红,等. 压-弯-扭耦合荷载作用下钢管约束钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报,2017,38(增1): 185-189.

    WANG Yuhang, WANG Wei, ZHOU Xuhong, et al. Experimental study on seismic behavior of steel tube confined reinforced concrete columns subjected to combined compression-bending-torsion[J]. Journal of Building Structures, 2017, 38(S1): 185-189.
    [19] HUANG H, HAO R Q, ZHANG W, et al. Experimental study on seismic performance of square RC columns subjected to combined loadings[J]. Engineering Structures, 2019, 184: 194-204. doi: 10.1016/j.engstruct.2019.01.095
    [20] CHEN X, GUAN Z G, LI J Z, et al. Shake table tests of tall-pier bridges to evaluate seismic performance[J]. Journal of Bridge Engineering, 2018, 23(9): 04018058.1-04018058.13.
    [21] 邵长江,漆启明,韦旺,等. 铁路圆端空心高墩振动台模型试验研究[J]. 土木工程学报,2020,53(2): 72-80.

    SHAO Changjiang, QI Qiming, WEI Wang, et al. Shaking table test on the specimens of railway round-ended hollow tall piers[J]. China Civil Engineering Journal, 2020, 53(2): 72-80.
    [22] 吴再新,陈思孝. 渝利铁路新桥人型超高墩设计研究[J]. 铁道工程学报,2016,33(12): 68-71,104.

    WU Zaixin, CHEN Sixiao. Research on the design of herringbone high piers of Chongqing−Lichuan railway xinqiao bridge[J]. Journal of Railway Engineering Society, 2016, 33(12): 68-71,104.
    [23] 中华人民共和国建设部. 铁路工程抗震设计规范: GB 50111—2006[S]. 北京: 中国计划出版社, 2006.
    [24] YANG W L, LI Q. The expanded Morison equation considering inner and outer water hydrodynamic pressure of hollow piers[J]. Ocean Engineering, 2013, 69: 79-87. doi: 10.1016/j.oceaneng.2013.05.008
    [25] DENG Y L, GUO Q K, SHAH Y I, et al. Study on modal dynamic response and hydrodynamic added mass of water-surrounded hollow bridge pier with pile foundation[J]. Advances in Civil Engineering, 2019(1): 1-23.
    [26] ZHANG J R, WEI K, PANG Y T, et al. Numerical investigation into hydrodynamic effects on the seismic response of complex hollow bridge pier submerged in reservoir: case study[J]. Journal of Bridge Engineering, 2019, 24(2): 05018016.1-05018016.13. doi: 10.1061/(ASCE)BE.1943-5592.0001340
    [27] 王克海,韦韩,李茜,等. 中小跨径公路桥梁抗震设计理念[J]. 土木工程学报,2012,45(9): 115-121.

    WANG Kehai, WEI Han, LI Qian, et al. Philosophies on seismic design of highway bridges of small or medium spans[J]. China Civil Engineering Journal, 2012, 45(9): 115-121.
    [28] EL-BAHEY S, BRUNEAU M. Bridge piers with structural fuses and bi-steel columns. I: experimental testing[J]. Journal of Bridge Engineering, 2012, 17(1): 25-35. doi: 10.1061/(ASCE)BE.1943-5592.0000234
    [29] 谢文,孙利民,魏俊. 附有结构“保险丝”构件的桥墩抗震性能试验研究及其应用[J]. 中国公路学报,2014,27(3): 59-70.

    XIE Wen, SUN Limin, WEI Jun. Experimental study on seismic performance of bridge piers with structural fuses and its application[J]. China Journal of Highway and Transport, 2014, 27(3): 59-70.
    [30] 刘晓刚,李连友,聂鑫,等. 组合式消能减震墩柱试验与设计方法研究[J]. 土木工程学报,2017,50(2): 73-81.

    LIU Xiaogang, LI Lianyou, NIE Xin, et al. Analytical and experimental study on the composite energy dissipation pier[J]. China Civil Engineering Journal, 2017, 50(2): 73-81.
    [31] 李勇,刘晶波,李朝红. 基于耗能系梁的双肢高墩刚构桥减震控制研究[J]. 振动与冲击,2018,37(15): 130-135.

    LI Yong, LIU Jingbo, LI Zhaohong. Aseismic control of a rigid frame bridge with double-limb high piers based on energy dissipation tie-beams[J]. Journal of Vibration and Shock, 2018, 37(15): 130-135.
    [32] 徐秀丽,尹东亚,李枝军,等. 新型组合结构高墩的静力学分析方法[J]. 中国公路学报,2019,32(2): 77-86.

    XU Xiuli, YIN Dongya, LI Zhijun, et al. Static analysis method of new composite high pier structure[J]. China Journal of Highway and Transport, 2019, 32(2): 77-86.
    [33] 卓卫东,王志坚,廖丽云,等. 钢管混凝土柱-软钢消能元件组合高墩桥梁试设计[J]. 防灾减灾工程学报,2020,40(4): 483-489.

    ZHUO Weidong, WANG Zhijian, LIAO Liyun, et al. Trial design of bridge with concrete-filled steel tubular column and energy dissipating mild steel plate composite tall piers[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(4): 483-489.
    [34] MAKRIS N. Seismic isolation: early history[J]. Earthquake Engineering & Structural Dynamics, 2019, 48(2): 269-283.
    [35] HAN Q, JIA Z L, XU K, et al. Hysteretic behavior investigation of self-centering double-column rocking piers for seismic resilience[J]. Engineering Structures, 2019, 188: 218-232. doi: 10.1016/j.engstruct.2019.03.024
    [36] GE J P, SAIIDI M S. Seismic response of the three-span bridge with innovative materials including fault-rupture effect[J]. Shock and Vibration, 2018, 2018: 1-18.
    [37] 孙治国,司炳君,王东升,等. 钢筋混凝土桥墩震后修复技术研究综述[J]. 地震工程与工程振动,2009,29(5): 128-132.

    SUN Zhiguo, SI Bingjun, WANG Dongsheng, et al. Review on the repair techniques for earthquake damaged RC bridge piers[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(5): 128-132.
    [38] JUNG D, ANDRAWES B. Seismic damage assessment of SMA-retrofitted multiple-frame bridge subjected to strong main shock-aftershock excitations[J]. Journal of Bridge Engineering, 2018, 23(1): 04017113.1-04017113.11.
    [39] GUAN Z G, ZHANG J H, LI J Z. Multilevel performance classifications of tall RC bridge columns toward postearthquake rehabilitation requirements[J]. Journal of Bridge Engineering, 2017, 22(10): 04017080.1-04017080.12.
    [40] 黄显彬,杨虹,恩文海,等. 都汶高速公路庙子坪岷江特大桥震后5号主墩加固技术[J]. 建筑技术,2010,41(2): 136-139.

    HUANG Xianbin, YANG Hong, EN Wenhai, et al. Duwen expressway Miaoziping Minjiang river bridge after earthquake main pier on the 5th reinforcement technology[J]. Architecture Technology, 2010, 41(2): 136-139.
    [41] 倪国葳,刘倩,韩冰,等. 高墩大跨度刚构桥抗震加固有限元分析[J]. 世界地震工程,2019,35(2): 193-202.

    NI Guowei, LIU Qian, HAN Bing, et al. Finite element analysis on seismic reinforcement of long-span rigid frame bridge with high piers[J]. World Earthquake Engineering, 2019, 35(2): 193-202.
    [42] HAN Q, DU X L, LIU J B, et al. Seismic damage of highway bridges during the 2008 Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration, 2009, 8(2): 263-273. doi: 10.1007/s11803-009-8162-0
    [43] 杨万理, 李乔, 赵灿晖, 等. 庙子坪大桥主桥破坏机理分析及抗震设计对策[C]//第六届全国防震减灾工程学术研讨会论文集. 哈尔滨: 哈尔滨工业大学出版社, 2012: 1-10.
    [44] 童磊,王东升,王荣霞. 强震下高墩大跨刚构桥箱梁开裂及地震反应分析[J]. 地震工程与工程振动,2020,40(3): 108-116.

    TONG Lei, WANG Dongsheng, WANG Rongxia. Cracking damage and seismic response of large-span rigid frame bridges with high piers under strong earthquakes[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(3): 108-116.
    [45] 童磊,王东升,王荣霞. 汶川地震庙子坪特大桥主桥箱梁开裂震害分析[J]. 世界地震工程,2020,36(3): 161-171.

    TONG Lei, WANG Dongsheng, WANG Rongxia. Seismic damage analysis of box girder cracking of the Miaoziping bridge in Wenchuan earthquake[J]. World Earthquake Engineering, 2020, 36(3): 161-171.
    [46] 夏樟华. 钢筋混凝土箱型墩抗震性能研究[D]. 福州: 福州大学, 2013.
    [47] LI X Q, LI Z X, CREWE A J. Nonlinear seismic analysis of a high-pier, long-span, continuous RC frame bridge under spatially variable ground motions[J]. Soil Dynamics and Earthquake Engineering, 2018, 114: 298-312. doi: 10.1016/j.soildyn.2018.07.032
    [48] LIN Y Z, BI K M, ZONG Z H, et al. Seismic performance of steel-concrete composite rigid-frame bridge: shake table test and numerical simulation[J]. Journal of Bridge Engineering, 2020, 25(7): 04020032.1-04020032.16.
    [49] MEGALLY S, VELETZOS M J, BURNELL K, et al. Seismic performance of precast concrete segmental bridges: summary of experimental research on segmentto-segment joints[J]. PCI Journal, 2009, 54(2): 116-142. doi: 10.15554/pcij.03012009.116.142
    [50] WANG Z Q, LI T T, QU H Y, et al. Seismic performance comparison of precast segmental bridge girders with different cross sections and boundary conditions under vertical quasi-static cyclic testing: an experimental investigation[J]. Advances in Structural Engineering, 2018, 21(12): 1936-1948. doi: 10.1177/1369433218759780
    [51] ANAGNOSTOPOULOU M, FILIATRAULT A, AREF A. Seismic design and analysis of a precast segmental concrete bridge model[R]. Buffalo: State University of New York at Buffalo, 2011.
    [52] SHIBATA T, KATA K, KASUGA A, et al. Sustainability evaluation of butterfly web bridge[J]. Structural Concrete, 2018, 19(2): 422-439. doi: 10.1002/suco.201700010
    [53] JUNG K H, KIM J H J, YI J W, et al. Development and evaluation of new connection systems for hybrid truss bridges[J]. Journal of Advanced Concrete Technology, 2013, 11(2): 61-79. doi: 10.3151/jact.11.61
    [54] 闫晓宇,李忠献,韩强,等. 钢筋混凝土连续刚构-简支梁组合桥地震碰撞振动台阵试验[J]. 地震工程与工程振动,2014,34(2): 50-57.

    YAN Xiaoyu, LI Zhongxian, HAN Qiang, et al. Shaking tables test on seismic pounding responses of a continuous rigid frame and simply-supported girder combination bridge[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(2): 50-57.
    [55] 李晰,贾宏宇,李倩,等. 碰撞对山区高墩桥弹塑性动力响应的影响[J]. 西南交通大学学报,2018,53(1): 109-118.

    LI Xi, JIA Hongyu, LI Qian, et al. Effect of pounding on elastic-plastic dynamic response of high pier bridge in mountainous area[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 109-118.
    [56] DENG Y L, GUO Q K, XU L Q. Effects of pounding and fluid-structure interaction on seismic response of long-span deep-water bridge with high hollow piers[J]. Arabian Journal for Science and Engineering, 2019, 44(5): 4453-4465. doi: 10.1007/s13369-018-3459-9
    [57] ABBASI M, MOUSTAFA M A. Probabilistic seismic assessment of as-built and retrofitted old and newly designed skewed multi-frame bridges[J]. Soil Dynamics and Earthquake Engineering, 2019, 119: 170-186. doi: 10.1016/j.soildyn.2019.01.013
    [58] MALHOTRA P K. Dynamics of seismic pounding at expansion joints of concrete bridges[J]. Journal of Engineering Mechanics, 1998, 124(7): 794-802. doi: 10.1061/(ASCE)0733-9399(1998)124:7(794)
    [59] KATSARAS C P, PANAGIOTAKOS T B, KOLIAS B. Effect of torsional stiffness of prestressed concrete box girders and uplift of abutment bearings on seismic performance of bridges[J]. Bulletin of Earthquake Engineering, 2009, 7(2): 363-375. doi: 10.1007/s10518-008-9071-8
    [60] WILSON T, CHEN S R, MAHMOUD H. Analytical case study on the seismic performance of a curved and skewed reinforced concrete bridge under vertical ground motion[J]. Engineering Structures, 2015, 100: 128-136. doi: 10.1016/j.engstruct.2015.06.017
    [61] California Department of Transportation. Seismic innovations and enhancements on the east span [EB/OL]. [2021-06-10]. https://www.baybridgeinfo.org/projects/corridor-overview/seismic-innovations.
    [62] 李忠献,樊素英,史志利,等. 应用MRF-04K阻尼器的大跨连续刚构桥地震反应的半主动控制[J]. 土木工程学报,2005,38(8): 74-79.

    LI Zhongxian, FAN Suying, SHI Zhili, et al. Semi-active control on the seismic responses of long-span continuous rigid-framed bridges using MRF-04K damper[J]. China Civil Engineering Journal, 2005, 38(8): 74-79.
    [63] 周敉,朱国强,吴江,等. 地震下大跨径连续刚构桥合理约束体系研究[J]. 振动与冲击,2019,38(10): 98-104.

    ZHOU Mi, ZHU Guoqiang, WU Jiang, et al. Constraint system for a long-span continuous rigid frame bridge under earthquake[J]. Journal of Vibration and Shock, 2019, 38(10): 98-104.
    [64] 陈彦江, 孟伟岳, 罗振源, 等. 双肢薄壁连续刚构桥的减震试验[C]//《工业建筑》2018年全国学术年会论文集(下册). 北京: 工业建筑杂志社, 2018: 270-273.
    [65] 邵旭东,詹豪,雷薇,等. 超大跨径单向预应力UHPC连续箱梁桥概念设计与初步实验[J]. 土木工程学报,2013,46(8): 83-89.

    SHAO Xudong, ZHAN Hao, LEI Wei, et al. Conceptual design and preliminary experiment of super-long-span continuous box-girder bridge composed of one-way prestressed UHPC[J]. China Civil Engineering Journal, 2013, 46(8): 83-89.
    [66] 钟恩扬,秦小平. 都映高速公路庙子坪岷江特大桥震后结构状况专项检查[J]. 公路交通技术,2011,27(6): 75-79.

    ZHONG Enyang, QIN Xiaoping. Special inspection for structural conditions of Minjiang super-large bridge at Miaoziping on Douying expressway[J]. Technology of Highway and Transport, 2011, 27(6): 75-79.
    [67] 闫晓宇,李忠献,韩强,等. 考虑土-结构相互作用的大跨度连续刚构桥振动台阵试验研究[J]. 工程力学,2014,31(2): 58-65.

    YAN Xiaoyu, LI Zhongxian, HAN Qiang, et al. Shaking tables test on a long-span rigid-framed bridge considering soil-structure interaction[J]. Engineering Mechanics, 2014, 31(2): 58-65.
    [68] SHRESTHA B, HAO H, BI K M. Seismic response analysis of multiple-frame bridges with unseating restrainers considering ground motion spatial variation and SSI[J]. Advances in Structural Engineering, 2015, 18(6): 873-891. doi: 10.1260/1369-4332.18.6.873
    [69] 日本道路協会. 道路橋示方書·同解説[M]. 東京: 丸善出版, 2012.
    [70] WANG X W, YE A J, SHANG Y, et al. Shake-table investigation of scoured RC pile-group-supported bridges in liquefiable and nonliquefiable soils[J]. Earthquake Engineering & Structural Dynamics, 2019, 48(11): 1217-1237.
    [71] 郝朝伟,陈彦江,闫维明,等. 基底摇摆隔震在双肢薄壁高墩刚构桥中的应用[J]. 工程抗震与加固改造,2017,39(1): 101-108.

    HAO Chaowei, CHEN Yanjiang, YAN Weiming, et al. The application of controlled rocking isolation in the continuous rigid frame bridge with double limb thin-wall high piers[J]. Earthquake Resistant Engineering and Retrofitting, 2017, 39(1): 101-108.
    [72] CHEN Y Z, KUN C, LARKIN T, et al. Impact of vertical ground excitation on a bridge with footing uplift[J]. Journal of Earthquake Engineering, 2016, 20(7): 1035-1053. doi: 10.1080/13632469.2015.1113450
    [73] RELE R R, DAMMALA P K, BHATTACHARYA S, et al. Seismic behaviour of rocking bridge pier supported by elastomeric pads on pile foundation[J]. Soil Dynamics and Earthquake Engineering, 2019, 124: 98-120. doi: 10.1016/j.soildyn.2019.05.018
    [74] YAN B, YE X, DU X. Numerical investigation on seismic performance of base-isolation for rigid frame bridges[J]. Journal of Vibroengineering, 2013, 15(1): 395-405.
    [75] 中华人民共和国交通运输部. 公路桥梁抗震设计规范: JTG/T 2231-01—2020[S]. 北京: 人民交通出版社, 2020.
    [76] 刘健新, 葛胜锦. 日本公路桥梁抗震设计规范释义[M]. 北京: 人民交通出版社, 2014.
    [77] 孙利民,游新鹏,魏朝柱. 跨越山谷高墩混凝土桥地震倒塌分析[J]. 工程抗震与加固改造,2005,27(增1): 114-118.

    SUN Limin, YOU Xinpeng, WEI Chaozhu. Analysis of the collapse of high-pier bridges crossing deep valleys of mountain area under earthquake[J]. Earthquake Resistant Engineering, 2005, 27(S1): 114-118.
    [78] ZONG Z H, XIA Z H, LIU H H, et al. Collapse failure of prestressed concrete continuous rigid-frame bridge under strong earthquake excitation: testing and simulation[J]. Journal of Bridge Engineering, 2016, 21(9): 04016047.1-04016047.15.
    [79] HU M H, HAN Q, DU X L, et al. Seismic collapse analysis of RC highway bridges based on a simplified multiscale FE modeling approach[J]. Shock and Vibration, 2017, 2017: 1-19.
    [80] California Department of Transportation. Caltrans seismic design criteria: version 1.7[S]. Sacramento: [s. n.], 2013.
    [81] YASHINSKY M. Northridge 25 years later[EB /OL]. [2021-06-10]. https://www.structuremag.org/?p=14076
    [82] ZHOU G L, LI X J, QI X J. Seismic response analysis of continuous rigid frame bridge considering canyon topography effects under incident SV waves[J]. Earthquake Science, 2010, 23(1): 53-61. doi: 10.1007/s11589-009-0065-7
    [83] 闫晓宇,李忠献,韩强,等. 多点激励下大跨度连续刚构桥地震响应振动台阵试验研究[J]. 土木工程学报,2013,46(7): 81-89.

    YAN Xiaoyu, LI Zhongxian, HAN Qiang, et al. Shaking tables test study on seismic responses of a long-span rigid-framed bridge under multi-support excitations[J]. China Civil Engineering Journal, 2013, 46(7): 81-89.
    [84] 陈志伟,蒲黔辉,李晰,等. 行波效应对大跨连续刚构桥易损性影响分析[J]. 西南交通大学学报,2017,52(1): 23-29,37.

    CHEN Zhiwei, PU Qianhui, LI Xi, et al. Fragility analysis of large-span continuous rigid bridge considering wave passage effectt[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 23-29,37.
    [85] JIA H Y, ZHANG D Y, ZHENG S X, et al. Local site effects on a high-pier railway bridge under tridirectional spatial excitations: nonstationary stochastic analysis[J]. Soil Dynamics and Earthquake Engineering, 2013, 52: 55-69. doi: 10.1016/j.soildyn.2013.05.001
    [86] 翟长海,张林春,李爽,等. 近场地震动对大跨刚构桥影响的分析[J]. 防灾减灾工程学报,2010,30(增1): 143-147.
    [87] 李晰,贾宏宇,李倩. 近断层地震动作用下大跨度曲线刚构桥台阵试验研究[J]. 振动与冲击,2017,36(5): 199-207,237.

    LI Xi, JIA Hongyu, LI Qian. Shaking table tests for a long-span curved rigid bridge under near-fault ground motions[J]. Journal of Vibration and Shock, 2017, 36(5): 199-207,237.
    [88] 樊健生,刘晓刚,李果,等. 考虑双向地震作用的组合刚构桥抗震性能研究[J]. 振动与冲击,2014,33(13): 135-141.

    FAN Jiansheng, LIU Xiaogang, LI Guo, et al. Seismic performance investigation of composite rigid frame bridge under bi-directional seismic excitations[J]. Journal of Vibration and Shock, 2014, 33(13): 135-141.
    [89] 单德山,顾晓宇,董俊,等. 基于可靠度的桥梁构件三维地震易损性分析[J]. 西南交通大学学报,2019,54(5): 885-896,882.

    SHAN Deshan, GU Xiaoyu, DONG Jun, et al. 3D seismic vulnerability analysis of bridge structural components based on reliability[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 885-896,882.
    [90] 单德山,张二华,董俊,等. 汶川地震动衰减特性及其大跨高墩连续刚构桥的地震响应规律[J]. 土木工程学报,2017,50(4): 107-115.

    SHAN Deshan, ZHANG Erhua, DONG Jun, et al. Ground motion attenuation characteristics of Wenchuan earthquake and seismic response law of long-span continuous rigid frame bridge with high-rise pier[J]. China Civil Engineering Journal, 2017, 50(4): 107-115.
    [91] 闫维明,罗振源,许维炳,等. 近断层脉冲型地震动作用下高墩连续刚构桥振动台试验研究[J]. 北京工业大学学报,2020,46(8): 868-878.

    YAN Weiming, LUO Zhenyuan, XU Weibing, et al. Experimental research on the seismic response of a continuous rigid frame bridge with high piers under near-fault pulse-like ground motions[J]. Journal of Beijing University of Technology, 2020, 46(8): 868-878.
    [92] XU W B, LUO Z Y, YAN W M, et al. Impact of pulse parameters on the seismic response of long-period bridges[J]. Structure and Infrastructure Engineering, 2020, 16(10): 1461-1480. doi: 10.1080/15732479.2020.1712734
    [93] 贾宏宇,杨健,郑史雄,等. 跨断层桥梁抗震研究综述[J]. 西南交通大学学报,2021,56(5): 1075-1093.

    JIA Hongyu, YANG Jian, ZHENG Shixiong, et al. A review on aseismic bridges crossing fault rupture regions[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1075-1093.
    [94] SAIIDI M, VOSOOGHI A, CHOI H, et al. Shake table studies and analysis of a two-span RC bridge model subjected to a fault rupture[J]. Journal of Bridge Engineering, 2013, 19(8): A4014003.1-A4014003.9.
    [95] LIN Y Z, ZONG Z H, BI K M, et al. Experimental and numerical studies of the seismic behavior of a steel-concrete composite rigid-frame bridge subjected to the surface rupture at a thrust fault[J]. Engineering Structures, 2020, 205: 110105.1-110105.21.
    [96] LIN Y Z, ZONG Z H, BI K M, et al. Numerical study of the seismic performance and damage mitigation of steel-concrete composite rigid-frame bridge subjected to across-fault ground motions[J]. Bulletin of Earthquake Engineering, 2020, 18(15): 6687-6714. doi: 10.1007/s10518-020-00958-1
    [97] 大住道生,中尾尚史,西弘明. 橋の損傷シナリオデザインによる超過作用への対応策の一提案[J]. 日本地震工学会論文集,2019,19(5): 203-213.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  449
  • HTML全文浏览量:  486
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-27
  • 修回日期:  2021-09-30
  • 网络出版日期:  2023-04-01
  • 刊出日期:  2021-10-20

目录

    /

    返回文章
    返回