• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于时空注意力卷积神经网络的交通流量预测

夏英 刘敏

夏英, 刘敏. 基于时空注意力卷积神经网络的交通流量预测[J]. 西南交通大学学报, 2023, 58(2): 340-347. doi: 10.3969/j.issn.0258-2724.20210526
引用本文: 夏英, 刘敏. 基于时空注意力卷积神经网络的交通流量预测[J]. 西南交通大学学报, 2023, 58(2): 340-347. doi: 10.3969/j.issn.0258-2724.20210526
XIA Ying, LIU Min. Traffic Flow Prediction Based on Spatial-Temporal Attention Convolutional Neural Network[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 340-347. doi: 10.3969/j.issn.0258-2724.20210526
Citation: XIA Ying, LIU Min. Traffic Flow Prediction Based on Spatial-Temporal Attention Convolutional Neural Network[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 340-347. doi: 10.3969/j.issn.0258-2724.20210526

基于时空注意力卷积神经网络的交通流量预测

doi: 10.3969/j.issn.0258-2724.20210526
基金项目: 国家自然科学基金(41971365);重庆市自然科学基金(cstc2019jcyj-msxm1096)
详细信息
    作者简介:

    夏英(1972—),女,教授,博士,研究方向为时空大数据,跨媒体计算等,E-mail:xiaying@cqupt.edu.cn

  • 中图分类号: U491

Traffic Flow Prediction Based on Spatial-Temporal Attention Convolutional Neural Network

  • 摘要:

    为充分挖掘交通流量的复杂时空动态相关性以提高交通流量预测精度,引入空间注意力机制与膨胀因果卷积神经网络,提出一种基于时空注意力卷积神经网络的交通流量预测模型(spatio-temporal attention convolutional neural network,STACNN). 首先,由膨胀因果卷积与门控单元构建的门控时间卷积网络模块用于获取交通流量的非线性时间动态相关性,避免在训练长时间序列时发生梯度消失或梯度爆炸;其次,采用空间注意力机制为路网中的交通传感器节点自动分配注意力权重,动态关注不相邻节点之间的空间关系,并结合图卷积神经网络提取路网的局部空间动态相关性特征;然后,通过全连接层获取最终的交通流量预测结果;最后,利用高速公路交通数据集PEMSD4、PEMSD8进行了60 min的交通流量预测实验. 实验结果表明:与基线模型中具有良好性能的时空图卷积网络(spatio-temporal graph convolutional network,STGCN)模型相比,提出的STACNN模型预测结果的平均绝对误差(mean absolute error,MAE)在两个数据集上分别提高2.79%和1.18%,平均绝对百分比误差(mean absolute percentage error,MAPE)分别提高1.00%和0.46%,均方根误差(root mean square error,RMSE)分别提高3.80%和1.25%;此外,引入的膨胀因果卷积神经网络与空间注意力机制对提取时空动态相关性特征均具有积极的贡献.

     

  • 图 1  STACNN 模型框架

    Figure 1.  STACNN model framework

    图 2  卷积核大小为2的膨胀因果卷积

    Figure 2.  Dilated causal convolution with kernel size 2

    图 3  在PEMSD4和PEMSD8上进行15、30、45、60 min流量预测的结果对比

    Figure 3.  Comparison of results of 15, 30, 45, 60-minute traffic prediction by different methods on PEMSD4 and PEMSD8

    表  1  数据集描述

    Table  1.   Dataset description

    数据集传感器数/个时间范围数据点/个
    PEMSD43072018年1月1日—
    2月28日
    16992
    PEMSD81702016年7月1日—
    8月31日
    17856
    下载: 导出CSV

    表  2  不同方法在PEMSD4和PEMSD8上进行1 h流量预测的性能对比

    Table  2.   Performance comparison of different methods for one-hour traffic prediction on PEMSD4 and PEMSD8 %

    模型PEMSD4PEMSD8
    MAEMAPERMSEMAEMAPERMSE
    HA[1]38.5628.1756.8532.0620.3447.51
    VAR[7]30.6821.5146.9225.6016.9437.51
    LSTM[11]31.7728.6544.8428.8129.6140.80
    T-GCN[16]28.0422.8141.2124.0113.9533.98
    STGCN[17]26.4516.2341.3921.9412.3233.59
    STACNN-NT24.4015.7638.4521.4212.0233.11
    STACNN-NA25.1516.2538.6521.4112.6033.10
    STACNN23.6615.2337.4020.7611.8632.34
    下载: 导出CSV

    表  3  数据集训练的时间消耗

    Table  3.   Time consumption of training on datasets s

    模型PEMSD4PEMSD8
    STGCN121.0369.20
    STACNN-NA98.7145.22
    STACNN-NT235.57110.57
    STACNN197.5290.51
    下载: 导出CSV
  • [1] NAGY A M, SIMON V. Survey on traffic prediction in smart cities[J]. Pervasive and Mobile Computing, 2018, 50: 148-163. doi: 10.1016/j.pmcj.2018.07.004
    [2] 刘静,关伟. 交通流预测方法综述[J]. 公路交通科技,2004,21(3): 82-85.

    LIU Jing, GUAN Wei. A summary of traffic flow forecasting methods[J]. Journal of Highway Transportation Research Development, 2004, 21(3): 82-85.
    [3] 周晓,唐宇舟,刘强. 基于卡尔曼滤波的道路平均速度预测模型研究[J]. 浙江工业大学学报,2020,48(4): 392-396,404.

    ZHOU Xiao, TANG Yuzhou, LIU Qiang. Research on road average speed prediction model based on kalman filter[J]. Journal of Zhejiang University of Technology, 2020, 48(4): 392-396,404.
    [4] OKUTANI I, STEPHANEDES Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B: Methodological, 1984, 18(1): 1-11. doi: 10.1016/0191-2615(84)90002-X
    [5] HAMED M M, AL-MASAEID H R, SAID Z M B. Short-term prediction of traffic volume in urban arterials[J]. Journal of Transportation Engineering, 1995, 121(3): 249-254. doi: 10.1061/(ASCE)0733-947X(1995)121:3(249)
    [6] 李洁,彭其渊,杨宇翔. 基于SARIMA模型的广珠城际铁路客流量预测[J]. 西南交通大学学报,2020,55(1): 41-51. doi: 10.35741/issn.0258-2724.55.1.41

    LI Jie, PENG Qiyuan, YANG Yuxiang. Passenger flow prediction for Guangzhou−Zhuhai intercity railway based on SARIMA model[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 41-51. doi: 10.35741/issn.0258-2724.55.1.41
    [7] ZIVOT E, WANG J H. Modeling financial time series with S-PLUS®[M]. 2nd editon. New York: Springer, 2006: 385-429.
    [8] 姚智胜,邵春福,高永亮. 基于支持向量回归机的交通状态短时预测方法研究[J]. 北京交通大学学报,2006,30(3): 19-22. doi: 10.3969/j.issn.1673-0291.2006.03.005

    YAO Zhisheng, SHAO Chunfu, GAO Yongliang. Research on methods of short-term traffic forecasting based on support vector regression[J]. Journal of Beijing Jiaotong University, 2006, 30(3): 19-22. doi: 10.3969/j.issn.1673-0291.2006.03.005
    [9] 张晓利,贺国光,陆化普. 基于K-邻域非参数回归短时交通流预测方法[J]. 系统工程学报,2009,24(2): 178-183.

    ZHANG Xiaoli, HE Guoguang, LU Huapu. Short-term traffic flow forecasting based on K-nearest neighbors non-parametric regression[J]. Journal of Systems Engineering, 2009, 24(2): 178-183.
    [10] 陈丹,胡明华,张洪海,等. 基于贝叶斯估计的短时空域扇区交通流量预测[J]. 西南交通大学学报,2016,51(4): 807-814. doi: 10.3969/j.issn.0258-2724.2016.04.028

    CHEN Dan, HU Minghua, ZHANG Honghai, et al. Short-term traffic flow prediction of airspace sectors based on Bayesian estimation theory[J]. Journal of Southwest Jiaotong University, 2016, 51(4): 807-814. doi: 10.3969/j.issn.0258-2724.2016.04.028
    [11] SHAO H X, SOONG B H . Traffic flow prediction with long short-term memory networks (LSTMS)[C]// Proceedings of 2016 IEEE Region 10 Conference (TENCON). Singapore: IEEE, 2016: 2986-2989.
    [12] 刘明宇,吴建平,王钰博,等. 基于深度学习的交通流量预测[J]. 系统仿真学报,2018,30(11): 4100-4105,4114. doi: 10.16182/j.issn1004731x.joss.201811007

    LIU Mingyu, WU Jianping, WANG Yubo, et al. Traffic flow prediction based on deep learning[J]. Journal of System Simulation, 2018, 30(11): 4100-4105,4114. doi: 10.16182/j.issn1004731x.joss.201811007
    [13] SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//29th Annual Conference on Neural Information Processing Systems. Montreal: NIPS, 2015: 802-810
    [14] YAO H X, TANG X F, WEI H, et al. Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction[C]//Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence. Honolulu: AAAI, 2019: 5668-5675.
    [15] ZHANG J, ZHENG Y, QI D. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2016: 1655-1661.
    [16] ZHAO L, SONG Y J, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. doi: 10.1109/TITS.2019.2935152
    [17] YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Stockholm: IJCAI, 2018: 3634-3640.
    [18] TEDJOPURNOMO D A, BAO Z F, ZHENG B H, et al. A survey on modern deep neural network for traffic prediction: trends, methods and challenges[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(4): 1544-1561.
    [19] VELIKOVI P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//6th International Conference on Learning Representations. Vancouver: ICLR, 2018: 1-12
    [20] FENG X C, GUO J, QIN B, et al. Effective deep memory networks for distant supervised relation extraction[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Melbourne: IJCAI, 2017: 4002-4008.
    [21] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [C]//5th International Conference on Learning Representations. Toulon: ICLR, 2017: 1-14
    [22] SIMONOVSKY M, KOMODAKIS N. Dynamic edge-conditioned filters in convolutional neural networks on graphs[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 29-38.
    [23] YU F , KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//4th International Conference on Learning Representations. San Juan: ICLR, 2016: 1-13.
    [24] DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks[C]//34th International Conference on Machine Learning. Sydney: IMLS, 2017: 1551-1559.
    [25] GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu: AAAI, 2019: 922-929.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  922
  • HTML全文浏览量:  1646
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28
  • 修回日期:  2022-03-01
  • 网络出版日期:  2023-01-07
  • 刊出日期:  2022-03-05

目录

    /

    返回文章
    返回