• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑空间形状的覆盖型岩溶土洞降水致陷分析

郭锐剑 陈学军 段建 唐灵明 张晓宸

郭锐剑, 陈学军, 段建, 唐灵明, 张晓宸. 考虑空间形状的覆盖型岩溶土洞降水致陷分析[J]. 西南交通大学学报, 2023, 58(2): 453-461. doi: 10.3969/j.issn.0258-2724.20210494
引用本文: 郭锐剑, 陈学军, 段建, 唐灵明, 张晓宸. 考虑空间形状的覆盖型岩溶土洞降水致陷分析[J]. 西南交通大学学报, 2023, 58(2): 453-461. doi: 10.3969/j.issn.0258-2724.20210494
GUO Ruijian, CHEN Xuejun, DUAN Jian, TANG Lingming, ZHANG Xiaochen. Analysis on Precipitation-Induced Subsidence of Covered Karst Soil Caves Regarding Spatial Shape[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 453-461. doi: 10.3969/j.issn.0258-2724.20210494
Citation: GUO Ruijian, CHEN Xuejun, DUAN Jian, TANG Lingming, ZHANG Xiaochen. Analysis on Precipitation-Induced Subsidence of Covered Karst Soil Caves Regarding Spatial Shape[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 453-461. doi: 10.3969/j.issn.0258-2724.20210494

考虑空间形状的覆盖型岩溶土洞降水致陷分析

doi: 10.3969/j.issn.0258-2724.20210494
基金项目: 国家自然科学基金(41967037, 41762022);国家重点研发计划(2019YFC0507502);湖南省教育厅科学研究项目(20C0497, 19B125, 19A114)
详细信息
    作者简介:

    郭锐剑(1981—),女,讲师,博士研究生,研究方向为区域性地质灾害成灾机理及其防治工程,E-mail:361093737@qq.com

    通讯作者:

    陈学军(1961—),男,教授,博士,研究方向为岩土与地下工程,E-mail:chenxj@glut.edu.cn

  • 中图分类号: P694

Analysis on Precipitation-Induced Subsidence of Covered Karst Soil Caves Regarding Spatial Shape

  • 摘要:

    为揭示覆盖型岩溶土洞降水致陷机理、洞体形状尺寸影响及极限平衡状态下内在规律,以常见直筒塌陷椭球土洞为研究对象,构建其降水致陷力学模型,依据玻义耳-马略特定律推导了土洞空腔负压计算公式,以此获得土洞塌落稳定系数表达式,并对比验证计算公式的可行性;进一步获得了极限平衡状态下土体物理力学参数、降水参数、土洞空间形状尺寸及覆土厚度之间内在关系式;基于算例开展了地下水降水参数与土洞形状尺寸参数影响、极限平衡状态下内在规律分析. 研究结果表明:初始水位高于洞顶时,土洞塌落稳定系数与地下水降深展现“Z”字形规律变化,下降稳定水位降越拱顶瞬间极易引发土洞塌陷;初始水位处于洞体时,两者呈现前陡后缓的负相关变化规律,且洞内初始水位越高,降幅越大;初始水位低于洞底时,降深影响很小. 椭球长短半轴之比对稳定系数影响符合增函数变化规律,截面离心率越大越稳定,而圆形球体则最不利;矢高和稳定系数呈线性关系,矢高增加成拱效应显著,土洞越稳定. 极限平衡状态下,初始水位一定时,降深与覆盖层厚度正相关,呈现前缓后陡变化趋势,而覆盖层厚度一定时,降深与初始水位负相关;土洞水平截面离心率越大或矢高越大,达到极限平衡状态所需地下水降深则越大,表现为前缓后陡变化规律.

     

  • 图 1  土洞降水致陷力学模型

    Figure 1.  Mechanical model of soil cave collapse induced by precipitation

    图 2  A2工程地质剖面(单位:m)

    Figure 2.  Engineering geological profile of A2 (unit: m)

    图 3  降水参数$ {h}_{0}、\Delta h $对稳定系数的影响

    Figure 3.  Influence of groundwater parameters ${h_0}$ and $\Delta h$ on stability coefficient

    图 4  $ a、b $对稳定系数的影响

    Figure 4.  Influence of size parameters a and b on stability coefficient

    图 5  $c$对稳定系数的影响

    Figure 5.  Influence of size parameter c on stability coefficient

    图 6  极限状态下降水参数与覆盖层厚度内在规律

    Figure 6.  Inherent law of precipitation parameters and overburden thickness in limit state

    图 7  极限状态下降水参数与土洞形状尺寸内在规律

    Figure 7.  Inherent law of precipitation parameters and shape and size of soil cavity in limit state

    表  1  土体物理力学参数

    Table  1.   Physical and mechanical parameters of soil

    土层γ/(kN·m−3C/kPaϕ/(°)
    填土18.0~20.032.0~40.012.0~18.0
    粉砂15.0~18.05.0~9.04.0~10.0
    17.0~23.06.0~12.012.0~15.0
    黏土18.0~20.035.0~46.018.0~25.0
    下载: 导出CSV

    表  2  土洞降水致陷计算结果

    Table  2.   Calculation results of precipitation-induced subsidence of covered karst soil cave

    编号abc/mh0/mh/mK
    抽水前抽水后
    T73.75,1.75,1.751.632.22.150.95
    T89.50,6.00,6.006.082.21.050.53
    T102.50,2.50,2.502.582.21.850.86
    下载: 导出CSV
  • [1] CAHALAN M D, MILEWSKI A M. Sinkhole formation mechanisms and geostatistical-based prediction analysis in a mantled Karst terrain[J]. Catena, 2018, 165: 333-344. doi: 10.1016/j.catena.2018.02.010
    [2] 王滨,贺可强,高宗军. 岩溶塌陷发育的时空阶段性分析[J]. 水文地质工程地质,2001,28(5): 24-27. doi: 10.3969/j.issn.1000-3665.2001.05.006
    [3] 苏添金,洪儒宝,简文彬. 覆盖型岩溶土洞致灾过程的数值模拟与预测[J]. 自然灾害学报,2018,27(5): 179-187. doi: 10.13577/j.jnd.2018.0520

    SU Tianjin, HONG Rubao, JIAN Wenbin. Numerical simulation and prediction of covered Karst collapse[J]. Journal of Natural Disasters, 2018, 27(5): 179-187. doi: 10.13577/j.jnd.2018.0520
    [4] 万志清,秦四清,李志刚,等. 土洞形成的机理及起始条件[J]. 岩石力学与工程学报,2003,22(8): 1377-1382. doi: 10.3321/j.issn:1000-6915.2003.08.028

    WAN Zhiqing, QIN Siqing, LI Zhigang, et al. Formation mechanism and initial condition of soil cavity[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(8): 1377-1382. doi: 10.3321/j.issn:1000-6915.2003.08.028
    [5] 姜伏伟. 粘性土渗透破坏临界条件推导及试验探讨[J]. 地下空间与工程学报,2017,13(6): 1472-1476,1498.

    JIANG Fuwei. Discussion on formula derivation and test of critical hydraulic condition of cohesive soil[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(6): 1472-1476,1498.
    [6] CHANG D S, ZHANG L M. Critical hydraulic gradients of internal erosion under complex stress states[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(9): 1454-1467. doi: 10.1061/(ASCE)GT.1943-5606.0000871
    [7] JIA L, LI L J, MENG Y, et al. Responses of cover-collapse sinkholes to groundwater changes: a case study of early warning of soil cave and sinkhole activity on Datansha Island in Guangzhou, China[J]. Environmental Earth Sciences, 2018, 77(13): 1-11.
    [8] NAM B H, KIM Y J, YOUN H. Identification and quantitative analysis of sinkhole contributing factors in Florida’s karst[J]. Engineering Geology, 2020, 271: 105610.1-105610.14. doi: 10.1016/j.enggeo.2020.105610
    [9] 李涛,张子真,宗露丹. 地下空洞引起土质地层地陷的形成机制与预测研究[J]. 岩土力学,2015,36(7): 1995-2002. doi: 10.16285/j.rsm.2015.07.022

    LI Tao, ZHANG Zizhen, ZONG Ludan. Study of formation mechanism and prediction of sinkholes in soil stratum induced by subterranean cavity[J]. Rock and Soil Mechanics, 2015, 36(7): 1995-2002. doi: 10.16285/j.rsm.2015.07.022
    [10] LIU Z, ZHOU C Y, DU Z C, et al. Modeling cover-collapse sinkhole based on the theory of shells[J]. International Journal of Computational Materials Science and Engineering, 2019, 8(1): 1850028.1-1850028.17. doi: 10.1142/S2047684118500288
    [11] 王滨,贺可强. 岩溶塌陷临界土洞的极限平衡高度公式[J]. 岩土力学,2006,27(3): 458-462. doi: 10.3969/j.issn.1000-7598.2006.03.024

    WANG Bin, HE Keqiang. Study on limit equilibrium height expression of critical soil cave of karst collapse[J]. Rock and Soil Mechanics, 2006, 27(3): 458-462. doi: 10.3969/j.issn.1000-7598.2006.03.024
    [12] 苏永华,周乾,蹇宜霖. 孕育型土洞地陷判据研究[J]. 湖南大学学报(自然科学版),2020,47(5): 39-47. doi: 10.16339/j.cnki.hdxbzkb.2020.05.005

    SU Yonghua, ZHOU Qian, JIAN Yilin. Study on the criterion of land subsidence for gestation type soil cave[J]. Journal of Hunan University (Natural Sciences), 2020, 47(5): 39-47. doi: 10.16339/j.cnki.hdxbzkb.2020.05.005
    [13] 苏永华,廖君橙,黄腾. 城区地表塌陷土洞发育破坏特征[J]. 湖南大学学报(自然科学版),2021,48(11): 177-184. doi: 10.16339/j.cnki.hdxbzkb.2021.11.018

    SU Yonghua, LIAO Juncheng, HUANG Teng. Study on development and failure characteristics of soil caves in urban surface subsidence[J]. Journal of Hunan University (Natural Sciences), 2021, 48(11): 177-184. doi: 10.16339/j.cnki.hdxbzkb.2021.11.018
    [14] 肖先煊. 覆盖型岩溶区水气相互驱动盖层变形演化及塌陷机理研究[D]. 成都: 成都理工大学, 2018.
    [15] XIAO X X, XU M, DING Q Z, et al. Experimental study investigating deformation behavior in land overlying a Karst cave caused by groundwater level changes[J]. Environmental Earth Sciences, 2018, 77(3): 641-6411.
    [16] XIAO X X, GUTIÉRREZ F, GUERRERO J. The impact of groundwater drawdown and vacuum pressure on sinkhole development. Physical laboratory models[J]. Engineering Geology, 2020, 279: 105894.1-105894.10.
    [17] 魏锋,陈忠达,陈峙峰,等. 路堤下伏溶洞受力模式和变形破坏的数值模拟[J]. 中国公路学报,2018,31(6): 195-206. doi: 10.3969/j.issn.1001-7372.2018.06.006

    WEI Feng, CHEN Zhongda, CHEN Zhifeng, et al. Numerical simulation of the mechanical characteristic and failure mode of Karst subgrade[J]. China Journal of Highway and Transport, 2018, 31(6): 195-206. doi: 10.3969/j.issn.1001-7372.2018.06.006
    [18] SHIAU J, KEAWSAWASVONG S, CHUDAL B, et al. Sinkhole stability in elliptical cavity under collapse and blowout conditions[J]. Geosciences, 2021, 11(10): 421.1-421.15.
    [19] 王启智. 球形空洞地基稳定性分析[J]. 四川建筑科学研究,2005,31(4): 74-75,94. doi: 10.3969/j.issn.1008-1933.2005.04.026

    WANG Qizhi. Stability analysis for a spherical cave in soil foundation[J]. Building Science Research of Sichuan, 2005, 31(4): 74-75,94. doi: 10.3969/j.issn.1008-1933.2005.04.026
    [20] 廖丽萍,杨万科,王启智. 椭球形空洞地基稳定性分析[J]. 岩土力学,2010,31(增2): 138-148. doi: 10.16285/j.rsm.2010.s2.062

    LIAO Liping, YANG Wanke, WANG Qizhi. Stability analysis of an ellipsoidal cavity in foundation[J]. Rock and Soil Mechanics, 2010, 31(S2): 138-148. doi: 10.16285/j.rsm.2010.s2.062
    [21] 李倩倩,张顶立,房倩. 含空洞地层初始破坏的复变函数解析研究[J]. 岩土工程学报,2014,36(11): 2110-2117. doi: 10.11779/CJGE201411018

    LI Qianqian, ZHANG Dingli, FANG Qian. Analytic solution to initial damage of cavern strata by complex function method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2110-2117. doi: 10.11779/CJGE201411018
    [22] 赵衡,肖尧,赵明华,等. 路基下伏矩形溶洞的稳定性解析法[J]. 中国公路学报,2018,31(2): 165-170,180. doi: 10.3969/j.issn.1001-7372.2018.02.017

    ZHAO Heng, XIAO Yao, ZHAO Minghua, et al. Stability assessment method for subgrade with underlying rectangular cavity[J]. China Journal of Highway and Transport, 2018, 31(2): 165-170,180. doi: 10.3969/j.issn.1001-7372.2018.02.017
    [23] 刘秀敏,陈从新,于群群,等. 黏土颗粒含量对土洞稳定性影响试验研究[J]. 岩石力学与工程学报,2021,40(9): 1914-1922. doi: 10.13722/j.cnki.jrme.2021.0176

    LIU Xiumin, CHEN Congxin, YU Qunqun, et al. Experimental study on the influence of clay particle contents on the stability of soil caves[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(9): 1914-1922. doi: 10.13722/j.cnki.jrme.2021.0176
    [24] 程守洙, 江之永. 普通物理学 • 上册[M]. 7版. 北京: 高等教育出版社, 2016.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  92
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-22
  • 修回日期:  2022-06-18
  • 网络出版日期:  2023-02-21
  • 刊出日期:  2022-07-13

目录

    /

    返回文章
    返回