• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于最大拉应变准则的冻融岩石损伤模型研究

候超 靳晓光 何杰 张驰

候超, 靳晓光, 何杰, 张驰. 基于最大拉应变准则的冻融岩石损伤模型研究[J]. 西南交通大学学报, 2023, 58(5): 1045-1055. doi: 10.3969/j.issn.0258-2724.20210493
引用本文: 候超, 靳晓光, 何杰, 张驰. 基于最大拉应变准则的冻融岩石损伤模型研究[J]. 西南交通大学学报, 2023, 58(5): 1045-1055. doi: 10.3969/j.issn.0258-2724.20210493
HOU Chao, JIN Xiaoguang, HE Jie, ZHANG Chi. Research on Damage Model of Rock Under Freeze-Thaw Cycles Based on Maximum Tensile Strain Criterion[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1045-1055. doi: 10.3969/j.issn.0258-2724.20210493
Citation: HOU Chao, JIN Xiaoguang, HE Jie, ZHANG Chi. Research on Damage Model of Rock Under Freeze-Thaw Cycles Based on Maximum Tensile Strain Criterion[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1045-1055. doi: 10.3969/j.issn.0258-2724.20210493

基于最大拉应变准则的冻融岩石损伤模型研究

doi: 10.3969/j.issn.0258-2724.20210493
基金项目: 国家自然科学基金(51578091)
详细信息
    作者简介:

    候 超(1990—),男,博士研究生,研究方向为寒区岩石损伤机理,E-mail:20181601014@alu.cqu.edu.cn

    通讯作者:

    靳晓光(1967—),男,教授,研究方向为隧道及地下空间工程,E-mail: jinxiaoguang@alu.cqu.edu.cn

  • 中图分类号: TU45

Research on Damage Model of Rock Under Freeze-Thaw Cycles Based on Maximum Tensile Strain Criterion

  • 摘要:

    为反映寒区遭受冻融的岩石在外力作用下的应力-应变全过程,基于统计损伤力学理论,假设岩石微元体强度服从Weibull分布,结合最大拉应变破坏准则,建立了考虑冻融和荷载耦合作用的寒区冻融岩石损伤模型;推导了模型参数的理论解,利用已有的试验结果和已有损伤本构对模型进行了验证,探讨了不同冻融次数下岩石的总损伤曲线演化规律,并对模型参数进行了分析;采用数值模拟方法计算了冻融循环对隧道工程稳定性的影响. 结果表明:本文所建立的模型可较好地重现岩石的应力-应变全过程,并能反映岩石的峰后强度;不同冻融次数下岩石的总损伤演变曲线呈“S”形,总损伤演变曲线可分为3个阶段,即初始损伤阶段、加速阶段和完全损伤阶段;Weibull分布参数$ m $和$ {f}_{0} $分别代表岩石的脆性特征和塑性特征;随着冻融次数的增加,隧道围岩的垂直位移、最大主应力及衬砌最大主应力均逐渐增加,但隧道围岩的应力增幅较小,经历10次冻融循环后,隧道拱顶的围岩下沉量和底部的围岩隆起量分别增加17.87%和19.24%,隧道围岩最大拉应力和压应力极值分别增加了2.70%和2.01%,隧道衬砌最大拉应力和压应力极值分别增加了21.52%和17.87%.

     

  • 图 1  低孔隙率硬质花岗岩试验与理论曲线对比(${\sigma }_{3} $ = 10 MPa)

    Figure 1.  Comparison of experimental and theoretical curves of hard granite with low-porosity (${\sigma }_{3} $ = 10 MPa)

    图 2  高孔隙率软质红砂岩试验与理论曲线对比

    Figure 2.  Comparison of experimental and theoretical curves of soft red sandstone with high porosity

    图 3  低孔隙率硬质花岗岩总损伤演变曲线

    Figure 3.  Total damage evolution curves of hard granite with low-porosity

    图 4  高孔隙率软质红砂岩总损伤演变曲线

    Figure 4.  Total damage evolution curves of soft red sandstone with high porosity

    图 5  冻融受荷岩石总损伤演变规律

    Figure 5.  The evolution of total damage of rock under loading and freeze-thaw action

    图 6  参数$ m $对应力-应变曲线的影响

    Figure 6.  Influence of parameter m on the stress-strain curve

    图 7  参数$ {f}_{0} $对应力-应变曲线的影响

    Figure 7.  Influence of parameter $ {f}_{0} $ on the stress-strain curve

    图 8  参数$ m $对总损伤量的影响

    Figure 8.  Influence of parameter $ m $ on the total damage

    图 9  参数$ {f}_{0} $对总损伤量的影响

    Figure 9.  Influence of parameter $ {f}_{0} $ on the total damage

    图 10  隧道工程算例计算模型(单位:m)

    Figure 10.  Calculation model of tunnel engineering example (unit: m)

    图 12  不同冻融次数下隧道围岩最大主应力矢量场

    Figure 12.  Maximum principal stress vector field of surrounding rock for tunnel under different freeze-thaw cycles

    图 11  不同冻融次数下隧道围岩竖向位移

    Figure 11.  Vertical displacement of surrounding rock for tunnel under different freeze-thaw cycles

    图 13  不同冻融次数下隧道衬砌最大主应力

    Figure 13.  Maximum principal stress in tunnel lining under different freeze-thaw cycles

    表  1  低孔隙率硬质花岗岩力学参数

    Table  1.   Mechanical parameters of hard granite with low porosity

    N/次围压/
    MPa
    峰值应力/
    MPa
    峰值点
    应变
    残余强度/
    MPa
    弹性模量/
    GPa
    010185.140.00524036.71
    50160.020.006814026.67
    100123.290.00589022.99
    150106.240.00644021.12
    下载: 导出CSV

    表  2  高孔隙率软质红砂岩力学参数

    Table  2.   Mechanical parameters of soft red sandstone with high porosity

    N/次围压/MPa峰值应力/MPa峰值点应变残余强度/MPa弹性模量/GPa泊松比
    0624.8660.01622.4081.6490.254
    5419.1320.01314.8221.4520.257
    10212.7010.0117.0201.1560.262
    下载: 导出CSV

    表  3  不同冻融次数下隧道围岩力学参数

    Table  3.   Mechanical parameters of surrounding rock for tunnel under different freeze-thaw cycles

    N/次弹性模量/GPa黏聚力/MPa泊松比容重/(kN·m−3内摩擦角/(°)
    01.3871.910.2582230
    51.2951.620.259
    101.1561.410.262
    下载: 导出CSV
  • [1] 张德,刘恩龙,刘星炎,等. 基于修正Mohr-Coulomb屈服准则的冻结砂土损伤本构模型[J]. 岩石力学与工程学报,2018,37(4): 978-986. doi: 10.13722/j.cnki.jrme.2017.1318

    ZHANG De, LIU Enlong, LIU Xingyan, et al. A damage constitutive model for frozen sandy soils based on modified Mohr-Coulomb yield criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 978-986. doi: 10.13722/j.cnki.jrme.2017.1318
    [2] 李玉成,陈有亮,孙浩程,等. 寒区花岗岩冻融损伤破坏的试验研究[J]. 工业建筑,2019,49(7): 83-88,107.

    LI Yucheng, CHEN Youliang, SUN Haocheng, et al. An experimental study of granite’s damage caused by freeze-thaw cycles in cold region[J]. Industrial Construction, 2019, 49(7): 83-88,107.
    [3] 罗学东,黄成林,肜增湘,等. 冻融循环作用下蒙库铁矿边坡岩体物理力学特性研究[J]. 岩土力学,2011,32(增1): 155-159.

    LUO Xuedong, HUANG Chenglin, RONG Zengxiang, et al. Study of physico-mechanical characteristics of rocks in slope of Mengku iron mine under freezing-thawing cyclic effect[J]. Rock and Soil Mechanics, 2011, 32(S1): 155-159.
    [4] 吕文韬,杨龙,魏云杰,等. 新疆塔县地区片麻岩冻融劣化机理与规律试验研究[J]. 水文地质工程地质,2019,46(3): 95-100.

    LYU Wentao, YANG Long, WEI Yunjie, et al. Research on mechanism of freezing-thawing deterioration of gneisses in the Taxian area of Xinjiang[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 95-100.
    [5] 方云,乔梁,陈星,等. 云冈石窟砂岩循环冻融试验研究[J]. 岩土力学,2014,35(9): 2433-2442.

    FANG Yun, QIAO Liang, CHEN Xing, et al. Experimental study of freezing-thawing cycles on sandstone in Yungang grottos[J]. Rock and Soil Mechanics, 2014, 35(9): 2433-2442.
    [6] 徐拴海,李宁,王晓东,等. 露天煤矿冻岩边坡饱和砂岩冻融损伤试验与劣化模型研究[J]. 岩石力学与工程学报,2016,35(12): 2561-2571.

    XU Shuanhai, LI Ning, WANG Xiaodong, et al. Damage test and degradation model of saturated sandstone due to cyclic freezing and thawing of rock slopes of open-pit coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2561-2571.
    [7] HUANG S B, LIU Q S, LIU Y Z, et al. Frost heaving and frost cracking of elliptical cavities (fractures) in low-permeability rock[J]. Engineering Geology, 2018, 234: 1-10. doi: 10.1016/j.enggeo.2017.12.024
    [8] PARK J, HYUN C U, PARK H D. Changes in microstructure and physical properties of rocks caused by artificial freeze-thaw action[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(2): 555-565. doi: 10.1007/s10064-014-0630-8
    [9] 李新平,路亚妮,王仰君. 冻融荷载耦合作用下单裂隙岩体损伤模型研究[J]. 岩石力学与工程学报,2013,32(11): 2307-2315.

    LI Xinping, LU Yani, WENG Yangjun. Research on damage model of single jointed rock masses under coupling action of freeze-thaw and loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2307-2315.
    [10] 张慧梅,雷利娜,杨更社. 温度与荷载作用下岩石损伤模型[J]. 岩石力学与工程学报,2014,33(增2): 3391-3396.

    ZHANG Huimei, LEI Lina, YANG Gengshe. Damage model of rock under temperature and load[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 3391-3396.
    [11] HUANG S B, LIU Q S, CHENG A P, et al. A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application[J]. Cold Regions Science and Technology, 2018, 145: 142-150. doi: 10.1016/j.coldregions.2017.10.015
    [12] JIA H L, XIANG W, KRAUTBLATTER M. Quantifying rock fatigue and decreasing compressive and tensile strength after repeated freeze-thaw cycles[J]. Permafrost and Periglacial Processes, 2015, 26(4): 368-377. doi: 10.1002/ppp.1857
    [13] 袁超,张慧梅,孟祥振,等. 内摩擦角对冻融岩石损伤本构模型的影响探讨[J]. 煤田地质与勘探,2019,47(4): 138-143. doi: 10.3969/j.issn.1001-1986.2019.04.021

    YUAN Chao, ZHANG Huimei, MENG Xiangzhen, et al. Influence of internal friction angle on damage constitutive model of freeze-thaw rock[J]. Coal Geology & Exploration, 2019, 47(4): 138-143. doi: 10.3969/j.issn.1001-1986.2019.04.021
    [14] 张峰瑞,姜谙男,杨秀荣,等. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学,2020,41(2): 509-519.

    ZHANG Fengrui, JIANG Annan, YANG Xiurong, et al. Experimental and model research on shear creep of granite under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.
    [15] JEAN L. A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology, 1985, 107(1): 83-89. doi: 10.1115/1.3225775
    [16] 张慧梅,孟祥振,彭川,等. 岩石变形全过程冻融损伤模型及其参数[J]. 西安科技大学学报,2018,38(2): 260-265.

    ZHANG Huimei, MENG Xiangzhen, PENG Chuan, et al. Freeze-thaw damage model and parameters of rock deformation in whole process[J]. Journal of Xi’an University of Science and Technology, 2018, 38(2): 260-265.
    [17] TAN X J, CHEN W Z, YANG J P, et al. Laboratory investigations on the mechanical properties degradation of granite under freeze-thaw cycles[J]. Cold Regions Science and Technology, 2011, 68(3): 130-138. doi: 10.1016/j.coldregions.2011.05.007
    [18] 张慧梅,杨更社. 冻融岩石损伤劣化及力学特性试验研究[J]. 煤炭学报,2013,38(10): 1756-1762.

    ZHANG Huimei, YANG Gengshe. Experimental study of damage deterioration and mechanical properties for freezing-thawing rock[J]. Journal of China Coal Society, 2013, 38(10): 1756-1762.
    [19] 张慧梅,孟祥振,彭川,等. 冻融-荷载作用下基于残余强度特征的岩石损伤模型[J]. 煤炭学报,2019,44(11): 3404-3411.

    ZHANG Huimei, MENG Xiangzhen, PENG Chuan, et al. Rock damage constitutive model based on residual intensity characteristics under freeze-thaw and load[J]. Journal of China Coal Society, 2019, 44(11): 3404-3411.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  379
  • HTML全文浏览量:  105
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07
  • 修回日期:  2022-01-07
  • 网络出版日期:  2023-05-13
  • 刊出日期:  2022-01-14

目录

    /

    返回文章
    返回