• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

复合成层地层浅埋隧道开挖地表沉降规律分析

袁冉 熊维林 何毅 崔凯

袁冉, 熊维林, 何毅, 崔凯. 复合成层地层浅埋隧道开挖地表沉降规律分析[J]. 西南交通大学学报, 2022, 57(5): 1063-1069. doi: 10.3969/j.issn.0258-2724.20210473
引用本文: 袁冉, 熊维林, 何毅, 崔凯. 复合成层地层浅埋隧道开挖地表沉降规律分析[J]. 西南交通大学学报, 2022, 57(5): 1063-1069. doi: 10.3969/j.issn.0258-2724.20210473
YUAN Ran, XIONG Weilin, HE Yi, CUI Kai. Analysis of Ground Settlement Induced by Shallow Tunnel Excavation in Composite Layered Strata[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1063-1069. doi: 10.3969/j.issn.0258-2724.20210473
Citation: YUAN Ran, XIONG Weilin, HE Yi, CUI Kai. Analysis of Ground Settlement Induced by Shallow Tunnel Excavation in Composite Layered Strata[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1063-1069. doi: 10.3969/j.issn.0258-2724.20210473

复合成层地层浅埋隧道开挖地表沉降规律分析

doi: 10.3969/j.issn.0258-2724.20210473
基金项目: 国家自然科学基金(51609204, 51608454, 42077236, 42177128);四川省科技计划资助(2021YFH0037,2019JDJQ0018)
详细信息
    作者简介:

    袁冉(1987—),女,副教授,博士,研究方向为岩土工程、地下工程,E-mail:yuanran88516@126.com

    通讯作者:

    崔凯(1979—),男,教授,博士,研究方向为岩土工程,E-mail:cuikai@swjtu.cn

  • 中图分类号: O319.56

Analysis of Ground Settlement Induced by Shallow Tunnel Excavation in Composite Layered Strata

  • 摘要:

    为探究本构模型对浅埋隧道开挖诱发地表沉降规律的影响,考虑摩擦性与临界状态土体本构模型,对复合成层地层浅埋隧道开挖诱发的地表沉降槽进行了分析. 首先,基于PlAXIS 3D有限元平台建立砂-黏复合地层浅埋隧道数值模型,材料模型选用3类本构模型(莫尔库伦(MC)、修正剑桥(MCC)、硬化小应变(HSS))及其组合模型;其次,利用参数等值转换关系,深入探讨了本构模型的选取对隧道开挖地表沉降槽宽度与深度的影响;最后,结合经验公式计算并对比分析,研究基于3类本构模型及其组合模型的沉降槽数值模拟与经验计算结果存在差异的原因. 结果表明:上、下地层均采用HSS模型时,最大沉降量及沉降槽宽度与经验公式的计算结果吻合度较高,最大沉降量相差不超过7.3 mm;上、下地层均采用MC模型时,出现地表隆起的不合理现象;下卧地层采用MCC模型、上伏地层分别采用MC模型和HSS模型,即采用MC -MCC模型和HSS -MCC模型时,其数值预测的最大沉降量高于经验公式计算值,达24.8 mm,而沉降槽形状相对于经验公式预测结果“窄而陡”;在针对HSS模型的参数敏感性分析中发现,若卸载再加载模量与初始剪切模量变化值为5%,将导致地表最大沉降量分别改变1.5%和1.0%.

     

  • 图 1  主应力空间中的MC模型屈服面

    Figure 1.  Yield surface of MC model in principal stress space

    图 2  p-q平面上的MCC模型屈服面

    Figure 2.  Yield surface of MCC model on p-q plane

    图 3  HSS模型

    Figure 3.  HSS model

    图 4  有限元模型网格划分(单位:m)

    Figure 4.  Meshing of finite element model (unit: m)

    图 5  经验公式土层分布情况

    Figure 5.  Soil layer distribution of empirical formula

    图 6  不同本构模型的地表沉降数值计算值与经验公式计算值对比

    Figure 6.  Comparison of numerical values of land subsidence calculated by different constitutive models with those calculated by empirical formulas

    图 7  HSS模型改变砂土厚度竖向位移分布(Z1=5 m,Z2=9 m)

    Figure 7.  Contour of vertical displacement of HSS model changing sand thickness (Z1=5 m, Z2=9 m)

    图 8  HSS模型参数敏感性分析

    Figure 8.  Parametric sensitivity analysis of HSS model

    表  1  模型分析工况

    Table  1.   Working conditions for model analysis m

    工况Z1Z2H模型高度
    1195.528
    2296.529
    3397.530
    4498.531
    5599.532
    下载: 导出CSV

    表  2  MC模型计算参数[7,11]

    Table  2.   Calculation parameters of MC model[7,11]

    土体类型c/kPaφ/(°)ψ/(°)E/MPav
    砂土 1 33 3 120 0.3
    黏土 10 20 0 50 0.2
    下载: 导出CSV

    表  3  MCC模型计算参数[7]

    Table  3.   Calculation parameters of MCC model [7]

    土体类型Mλκe0v
    黏土10.10.0160.660.2
    下载: 导出CSV

    表  4  HSS模型计算参数[7,11]

    Table  4.   Calculation parameters of HSS model[7,11]

    土体
    类型
    E50/
    MPa
    Eoed/
    MPa
    Eur/
    MPa
    G0ref/
    MPa
    γ
    砂土1201203601 800.00.000 2
    黏土131339136.50.000 2
    下载: 导出CSV
  • [1] ZHENG G, YANG X, ZHOU H, et al. Simplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations[J]. Computers and Geotechnics, 2018, 95: 119-128.
    [2] 李涛,崔远,曹英杰,等. 岩-土复合地层暗挖隧道施工引起地表沉降计算方法[J]. 中国铁道科学,2020,41(2): 73-80. doi: 10.3969/j.issn.1001-4632.2020.02.09

    LI Tao, CUI Yuan, CAO Yingjie, et al. Calculation method of surface settlement caused by construction of mining tunnel in rock-soil composite strata[J]. China Railway Science, 2020, 41(2): 73-80. doi: 10.3969/j.issn.1001-4632.2020.02.09
    [3] 黄茂松,张治国,王卫东. 基于位移控制边界单元法盾构隧道开挖引起分层土体变形分析[J]. 岩石力学与工程学报,2009,28(12): 2544-2553. doi: 10.3321/j.issn:1000-6915.2009.12.022

    HUANG Maosong, ZHANG Zhiguo, WANG Weidong. Response analysis of shield tunnelling-induced layered soil deformation based on deformation controlled boundary element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12): 2544-2553. doi: 10.3321/j.issn:1000-6915.2009.12.022
    [4] 王金麒,李林安,陈茜,等. 水平分层土质条件下浅埋隧道掌子面支护稳定性研究[J]. 防灾减灾工程学报,2016,36(2): 196-204.

    WANG Jinqi, LI Linan, CHEN Qian, et al. Suppporting security research of shallow tunnel face in horizontal layered soil condition[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(2): 196-204.
    [5] 王维. 土岩复合地层盾构施工参数对地层及隧道变形特性影响[J]. 铁道建筑技术,2019(5): 12-16,21. doi: 10.3969/j.issn.1009-4539.2019.05.003

    WANG Wei. Influence of shield construction parameters on deformation characteristics of stratum and tunnel in soil-rock composite strata[J]. Railway Construction Technology, 2019(5): 12-16,21. doi: 10.3969/j.issn.1009-4539.2019.05.003
    [6] ROSCOE K H, BURLAND B. On the generalised stress-strain behaviour of an ideal wet clay[M]. Cambridge: Cambridge University Press, 1968.
    [7] 徐中华,王卫东. 敏感环境下基坑数值分析中土体本构模型的选择[J]. 岩土力学,2010,31(1): 258-264,326. doi: 10.3969/j.issn.1000-7598.2010.01.044

    XU Zhonghua, WANG Weidong. Selection of soil constitutive models for numerical analysis of deep excavations in close proximity to sensitive properties[J]. Rock and Soil Mechanics, 2010, 31(1): 258-264,326. doi: 10.3969/j.issn.1000-7598.2010.01.044
    [8] BENX T. Small-strain stiffness of soils and its numerical consequences[D]. Stuttgart: University of Stuttgart, 2007.
    [9] MITCHELL J K. Fundamentals of soil behavior[J]. Soil Science Society of America Journal, 1976, 40(4): 827-866.
    [10] 宋天田,周顺华,徐润泽. 盾构隧道盾尾同步注浆机 理与注浆参数的确定[J]. 地下空间与工程学报,2008,4(1): 130-133.

    SONG Tiantian, ZHOU Shenhua, XU Runze. Mechanism and determination of parameters of synchronous grouting in shield tunneling[J]. Chinese Journal of Underground Space and Engineering, 2008, 4(1): 130-133.
    [11] BRINKGREVE R B J, SWOLFS W M, BEUTH L, et al. PLAXIS 3D foundation material models manual[M]. 2nd ed. Delft: [s.n.], 2007.
    [12] MATHEW G V, LEHANE B M. Numerical back-analyses of greenfield settlement during tunnel boring[J]. Canadian Geotechnical Journal, 2013, 50(2): 145-152. doi: 10.1139/cgj-2011-0358
    [13] 顾晓强,吴瑞拓,梁发云,等. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学,2021,42(3): 833-845.

    GU Xiaoqiang, WU Ruituo, LIANG Fayun, et al. On HSS model parameters for Shanghai soils with engineering verification[J]. Rock and Soil Mechanics, 2021, 42(3): 833-845.
    [14] SELBY A R. Surface movements caused by tunnelling in two-layer soil[J]. Geological Society London Engineering Geology Special Publications, 1988, 5(1): 71-77. doi: 10.1144/GSL.ENG.1988.005.01.05
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  465
  • HTML全文浏览量:  178
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 修回日期:  2021-11-19
  • 网络出版日期:  2022-07-11
  • 刊出日期:  2021-12-30

目录

    /

    返回文章
    返回