• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

轨道参数对高速道岔轮轨接触行为的影响

徐井芒 郑兆光 赖军 杨怀志 闫正 钱瑶 王平

徐井芒, 郑兆光, 赖军, 杨怀志, 闫正, 钱瑶, 王平. 轨道参数对高速道岔轮轨接触行为的影响[J]. 西南交通大学学报, 2022, 57(5): 990-999. doi: 10.3969/j.issn.0258-2724.20210449
引用本文: 徐井芒, 郑兆光, 赖军, 杨怀志, 闫正, 钱瑶, 王平. 轨道参数对高速道岔轮轨接触行为的影响[J]. 西南交通大学学报, 2022, 57(5): 990-999. doi: 10.3969/j.issn.0258-2724.20210449
XU Jingmang, ZHENG Zhaoguang, LAI Jun, YANG Huaizhi, YAN Zheng, QIAN Yao, WANG Ping. Influence of Track Parameters on Wheel/Rail Contact Behavior of High-Speed Turnout[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 990-999. doi: 10.3969/j.issn.0258-2724.20210449
Citation: XU Jingmang, ZHENG Zhaoguang, LAI Jun, YANG Huaizhi, YAN Zheng, QIAN Yao, WANG Ping. Influence of Track Parameters on Wheel/Rail Contact Behavior of High-Speed Turnout[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 990-999. doi: 10.3969/j.issn.0258-2724.20210449

轨道参数对高速道岔轮轨接触行为的影响

doi: 10.3969/j.issn.0258-2724.20210449
基金项目: 国家自然科学基金(52122810,51978586);中央高校基本科研业务费专项资金(2682022ZTPY067);四川省杰出青年科技人才项目(2020JDJQ0033);
详细信息
    作者简介:

    徐井芒(1987—),男,教授,博士,研究方向为高速重载城市轨道交通轨道动力学,E-mail:mang080887@163.com

  • 中图分类号: U211.5

Influence of Track Parameters on Wheel/Rail Contact Behavior of High-Speed Turnout

  • 摘要:

    为研究60N钢轨350 km/h 18号高速道岔合理的轨距和轨底坡,利用60N钢轨高速道岔关键断面和实测LMA磨耗车轮,基于迹线法原理和Kalker三维非赫兹滚动接触理论,分析不同轨距和轨底坡参数下的轮轨接触几何和力学特性,并与CHN60钢轨高速道岔计算结果进行对比. 结果表明:在保证安全的前提下适当将轨距加宽可改善轮轨匹配关系,提升列车过岔平稳性,减小轮对横移量大于8 mm时的轮轨接触应力和表面滚动接触疲劳因子,延长尖轨使用寿命;轨底坡为1/30、1/40和1/50时,轮轨接触参数相差较小,匹配性能较优;轨底坡为1/10和1/20时,横向不平顺和轮轨滚动接触疲劳因子普遍较大,且1/10轨底坡对车轮磨耗的适应性较差;与CHN60钢轨高速道岔相比,60N钢轨高速道岔的等效锥度普遍更小,列车过岔平稳性更优;车轮磨耗易导致车轮在轮轨过渡区段空转,引起尖轨伤损.

     

  • 图 1  60N钢轨高速道岔直尖轨模型

    Figure 1.  60N rail model of high-speed turnout straight switch rail

    图 2  尖轨顶宽35 mm处钢轨廓形

    Figure 2.  Rail profiles at 35 mm width of top surface of switch rail

    图 3  不同运营里程LMA车轮型面

    Figure 3.  LMA wheel profile with different operating mileages

    图 4  不同轨距下轮轨接触点分布

    Figure 4.  Distribution of wheel-rail contact points under different rail gauges

    图 5  不同轨底坡下轮轨接触点分布

    Figure 5.  Distribution of wheel-rail contact points under different rail cants

    图 6  不同轨距下等效锥度

    Figure 6.  Equivalent conicity of different rail gauges

    图 7  不同轨底坡下等效锥度

    Figure 7.  Equivalent conicity of different rail cants

    图 8  不同轨距下接触斑面积

    Figure 8.  Contact spot area under different rail gauges

    图 9  不同轨底坡下接触斑面积

    Figure 9.  Contact spot area under different rail cants

    图 10  不同轨距下表面滚动接触疲劳因子

    Figure 10.  Surface rolling contact fatigue factors under different rail gauges

    图 11  不同轨底坡下表面接触疲劳因子

    Figure 11.  Surface contact fatigue factors under different rail cants

    图 12  轮轨接触斑分布

    Figure 12.  Wheel-rail contact spot distribution

    图 13  等效锥度对比

    Figure 13.  Comparison of equivalent conicities

  • [1] 王平,陈嵘,徐井芒,等. 高速铁路道岔系统理论与工程实践研究综述[J]. 西南交通大学学报,2016,51(2): 357-372. doi: 10.3969/j.issn.0258-2724.2016.02.015

    WANG Ping, CHEN Rong, XU Jingmang, et al. Theories and engineering practices of high-speed railway turnout system: survey and review[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 357-372. doi: 10.3969/j.issn.0258-2724.2016.02.015
    [2] 杜星,陶功权,杨城,等. 轨底坡变化对高速车辆运行行为的影响[J]. 西南交通大学学报,2022,57(2): 286-294.

    DU Xing, TAO Gongquan, YANG Cheng, et al. Influence of different rail cants change on dynamical characteristics of high-speed railway vehicles[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 286-294.
    [3] 钱瑶,王平,苏谦,等. 轨底坡对高速铁路轮轨接触行为影响分析[J]. 铁道工程学报,2018,35(3): 18-25. doi: 10.3969/j.issn.1006-2106.2018.03.004

    QIAN Yao, WANG Ping, SU Qian, et al. Effect analysis of rail cant on the wheel-rail contact behavior of high-speed railway[J]. Journal of Railway Engineering Society, 2018, 35(3): 18-25. doi: 10.3969/j.issn.1006-2106.2018.03.004
    [4] 陈嵘,温静,于浩,等. 地铁线路轨距对轮轨接触行为的影响[J]. 中南大学学报(自然科学版),2020,51(3): 824-831. doi: 10.11817/j.issn.1672-7207.2020.03.028

    CHEN Rong, WEN Jing, YU Hao, et al. Influence of rail gauge on wheel-rail contact behavior of metro line[J]. Journal of Central South University (Science and Technology), 2020, 51(3): 824-831. doi: 10.11817/j.issn.1672-7207.2020.03.028
    [5] 陈嵘,温静,李博,等. 考虑非对称轨底坡的轮轨滚动接触应力分析[J]. 铁道工程学报,2019,36(5): 13-19,70. doi: 10.3969/j.issn.1006-2106.2019.05.003

    CHEN Rong, WEN Jing, LI Bo, et al. Analysis of wheel/rail rolling contact stress considering asymmetric rail cant[J]. Journal of Railway Engineering Society, 2019, 36(5): 13-19,70. doi: 10.3969/j.issn.1006-2106.2019.05.003
    [6] CUI D B, LI L, JIN X S, et al. Wheel-rail profiles matching design considering railway track parameters[J]. Chinese Journal of Mechanical Engineering, 2010, 23(4): 410-417. doi: 10.3901/CJME.2010.04.410
    [7] SÁNCHEZ R A, SANJUÁN E L, BRAVO J L. Experimental validation of track inspection trolley using a rigorous self-checking procedure[J]. Journal of Surveying Engineering, 2020, 146(3): 0000315.1-0000315.8.
    [8] 李超,张军,李霞,等. 动态轨距优化技术在重载道岔上的应用[J]. 大连交通大学学报,2015,36(S1): 55-61.

    LI Chao, ZHANG Jun, LI Xia, et al. Research on dynamic gauge optimization of heavy haul switch rail[J]. Journal of Dalian Jiaotong University, 2015, 36(S1): 55-61.
    [9] YE Y G, SUN Y. Reducing wheel wear from the perspective of rail track layout optimization[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2021, 235(2): 217-234. doi: 10.1177/1464419320956831
    [10] 闫正,陈嘉胤,徐井芒,等. 不同车轮踏面与高速60N钢轨道岔静态接触特性研究[J]. 中南大学学报(自然科学版),2021,52(4): 1358-1370. doi: 10.11817/j.issn.1672-7207.2021.04.032

    YAN Zheng, CHEN Jiayin, XU Jingmang, et al. Study of static contact properties of diverse wheel treads and high-speed 60N rail turnout[J]. Journal of Central South University (Science and Technology), 2021, 52(4): 1358-1370. doi: 10.11817/j.issn.1672-7207.2021.04.032
    [11] 陈嵘,方嘉晟,汪鑫,等. 车轮型面演变对高速道岔区轮轨接触行为影响分析[J]. 铁道学报,2019,41(5): 101-108. doi: 10.3969/j.issn.1001-8360.2019.05.012

    CHEN Rong, FANG Jiasheng, WANG Xin, et al. Influence of wheel profile evolution on wheel-rail contact behavior in high-speed turnout area[J]. Journal of the China Railway Society, 2019, 41(5): 101-108. doi: 10.3969/j.issn.1001-8360.2019.05.012
    [12] 王晨,罗世辉,邬平波,等. 动车组踏面凹型磨耗对车辆稳定性的影响[J]. 西南交通大学学报,2021,56(1): 84-91.

    WANG Chen, LUO Shihui, WU Pingbo, et al. Effect of hollow worn tread of electric multiple units on vehicle stability[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 84-91.
    [13] British Standards Institution. BS EN 15302: 2008 Railway applications—method for determining the equivalent conicity[S]. London: British Standards Institution, 2008.
    [14] International Union of Railways. UIC code 519 method for determining the equivalent conicity[S]. Paris: International Union of Railways, 2004.
    [15] 马晓川,王平,徐井芒,等. 铁路道岔轮轨非赫兹滚动接触算法对比与分析[J]. 机械工程学报,2019,55(18): 95-103. doi: 10.3901/JME.2019.18.095

    MA Xiaochuan, WANG Ping, XU Jingmang, et al. Analysis and comparison of different wheel-rail non-hertzian rolling contact approaches in railway turnout[J]. Journal of Mechanical Engineering, 2019, 55(18): 95-103. doi: 10.3901/JME.2019.18.095
    [16] 干锋,戴焕云,高浩,等. 铁道车辆不同踏面等效锥度和轮轨接触关系计算[J]. 铁道学报,2013,35(9): 19-24. doi: 10.3969/j.issn.1001-8360.2013.09.004

    GAN Feng, DAI Huanyun, GAO Hao, et al. Calculation of equivalent conicity and wheel-rail contact relationship of different railway vehicle treads[J]. Journal of the China Railway Society, 2013, 35(9): 19-24. doi: 10.3969/j.issn.1001-8360.2013.09.004
  • 加载中
图(13)
计量
  • 文章访问数:  408
  • HTML全文浏览量:  156
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 修回日期:  2021-09-24
  • 网络出版日期:  2022-09-01
  • 刊出日期:  2021-12-17

目录

    /

    返回文章
    返回