• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于ABAQUS的深海采矿扬矿管纵向振动性能

宋庆辉 肖林京 姜海燕 刘秀杰 烟芳萍

宋庆辉, 肖林京, 姜海燕, 刘秀杰, 烟芳萍. 基于ABAQUS的深海采矿扬矿管纵向振动性能[J]. 西南交通大学学报, 2022, 57(4): 821-829. doi: 10.3969/j.issn.0258-2724.20210389
引用本文: 宋庆辉, 肖林京, 姜海燕, 刘秀杰, 烟芳萍. 基于ABAQUS的深海采矿扬矿管纵向振动性能[J]. 西南交通大学学报, 2022, 57(4): 821-829. doi: 10.3969/j.issn.0258-2724.20210389
SONG Qinghui, XIAO Linjing, JIANG Haiyan, LIU Xiujie, YAN Fangping. Longitudinal Vibration Characteristics of Deep Sea Mining Pipe Based on ABAQUS[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 821-829. doi: 10.3969/j.issn.0258-2724.20210389
Citation: SONG Qinghui, XIAO Linjing, JIANG Haiyan, LIU Xiujie, YAN Fangping. Longitudinal Vibration Characteristics of Deep Sea Mining Pipe Based on ABAQUS[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 821-829. doi: 10.3969/j.issn.0258-2724.20210389

基于ABAQUS的深海采矿扬矿管纵向振动性能

doi: 10.3969/j.issn.0258-2724.20210389
基金项目: 国家自然科学基金(51774193);山东省自然基金面上项目(ZR2020MF101)
详细信息
    作者简介:

    宋庆辉(1987—),男,博士研究生,研究方向为深海采矿技术与装备,E-mail:song870830@sdust.edu.cn

    通讯作者:

    肖林京(1966—),男,教授,博士生导师,研究方向为深海采矿技术、矿山运输技术与装备,E-mail:skd990278@sdust.edu.cn

  • 中图分类号: TD807

Longitudinal Vibration Characteristics of Deep Sea Mining Pipe Based on ABAQUS

  • 摘要:

    为了研究复杂阶梯状扬矿管在采矿船升沉运动和海流作用下的纵向振动特性,利用连续弹性杆振动理论,对5 000 m长扬矿管纵向振动性能进行分析. 首先,根据达朗贝尔原理建立扬矿管纵向振动数学模型,采用分离变量法推导管道固有频率方程;然后,进行振型的质量归一化处理;最后,利用ABAQUS软件建立扬矿管有限元模型,对管道的纵向动态响应进行研究. 研究结果表明:扬矿管的一阶纵向共振频率处于矿区海浪能量集中的频带内,随着中间矿仓质量的增加扬矿管固有频率减小,中间矿仓质量对高阶固有频率的影响更加明显;随着海浪频率的增加,纵向振幅、轴向力和轴向应力先增大后减小,并在一阶固有频率时达到峰值,其峰值分别发生在扬矿管5 000、0、1 000 m处;随着采矿船升沉幅值的增加,扬矿管的动态响应逐渐增大,当升沉幅值大于1.5 m时,扬矿管动态响应的增长速度变缓;扬矿管发生一阶纵向共振时,振动位移和轴向力先增大后作等幅稳态振荡;随着海水深度的增加,沿管长方向的振动幅值逐渐增大,振动平衡位置发生下移,振动响应时间发生延迟,同时轴向力和轴向应力逐渐减小,且轴向应力在每两级阶梯管间急剧变大.

     

  • 图 1  深海采矿扬矿管力学模型

    Figure 1.  Mechanical model of lifting pipe in deep sea mining

    图 2  海平面下的海流速度曲线

    Figure 2.  Curve of ocean current velocity below sea level

    图 3  深海采矿船与扬矿管试验模型

    Figure 3.  Test model of deep sea mining vessel and lifting pipe

    图 4  不同中间矿仓质量时的固有频率

    Figure 4.  Natural frequency of different buffer masses

    图 5  不同频率时扬矿管的振幅($ r $=1.0 m)

    Figure 5.  Amplitude of lifting pipe at different frequencies($ r $=1.0 m)

    图 6  不同升沉幅值时扬矿管的振幅($ \omega = 1.92 $ rad/s)

    Figure 6.  Amplitude of the lifting pipe at different heave amplitudes ($ \omega = 1.92 $ rad/s)

    图 7  纵向振动位移时历曲线

    Figure 7.  Vibration displacement time-history curve

    图 8  沿管长方向的振动位移

    Figure 8.  Vibration displacement along pipe length

    图 9  不同频率时扬矿管的最大轴向力($ r $=1.0 m)

    Figure 9.  Maximum axial force of lifting pipe at different frequencies ($ r $=1.0 m)

    图 10  不同升沉幅值时扬矿管的最大轴向力($ \omega = 1.92 $ rad/s)

    Figure 10.  Maximum axial force of lifting pipe at different heave amplitudes ($ \omega = 1.92 $ rad/s)

    图 11  轴向力的试验与仿真结果对比

    Figure 11.  Comparison of test and simulation results of axial force

    图 12  轴向力时历曲线

    Figure 12.  Axial force time-history curve

    图 13  沿管长方向的轴向力

    Figure 13.  Axial force along pipe length

    图 14  不同频率时扬矿管的最大轴向应力($ r $=1.0 m)

    Figure 14.  Maximum axial stress of lifting pipe at different frequencies ($ r $=1.0 m)

    图 15  不同升沉幅值时管道最大轴向应力($ \omega = 1.92 $ rad/s)

    Figure 15.  Maximum axial stress of lifting pipe at different heave amplitudes ($ \omega = 1.92 $ rad/s)

    图 16  沿管长方向的轴向应力

    Figure 16.  Axial stress along pipe length

    表  1  阶梯扬矿管的参数

    Table  1.   Parameters of stepped lifting pipe

    i长度/
    m
    外径/
    mm
    内径/
    mm
    单位长度
    质量 /(kg•m−1
    弹性
    模量/GPa
    11 000254206390.02206
    21 000240206267.84206
    31 500232206134.10206
    41 500226206101.74206
    下载: 导出CSV

    表  2  扬矿管前5阶固有频率

    Table  2.   The first five natural frequencies of lifting pipe

    阶数1 阶2 阶3 阶4 阶5 阶
    固有频率/(rad•s−11.924.868.1111.0314.24
    下载: 导出CSV
  • [1] 韩春杰. 深水平台钻井钻柱耦合振动及模拟分析[D]. 大庆: 大庆石油学院, 2010.
    [2] WU Q, YANG J M, LU H N, et al. Effects of heave motion on the dynamic performance of vertical transport system for deep sea mining[J]. Applied Ocean Research, 2020, 101: 102188. doi: 10.1016/j.apor.2020.102188
    [3] WANG Y B, GAO D, FANG J. Longitudinal vibration analysis of marine riser during installation and hangoff in ultra deepwater[J]. Computer Modeling in Engineering & Sciences, 2016, 111(4): 357-373.
    [4] WANG S W, XU X S, LU X. Movement optimization of freely-hanging deepwater risers in reentry[J]. Ocean Engineering, 2016, 116: 32-41. doi: 10.1016/j.oceaneng.2016.02.029
    [5] LIU J, ZHAO H L, LIU Q Y, et al. Dynamic behavior of a deepwater hard suspension riser under emergency evacuation conditions[J]. Ocean Engineering, 2018, 150: 138-151. doi: 10.1016/j.oceaneng.2017.12.050
    [6] THORSEN M J, CHALLABOTLA N R, SAEVIK S, et al. A numerical study on vortex-induced vibrations and the effect of slurry density variations on fatigue of ocean mining risers[J]. Ocean Engineering, 2019, 174: 1-13. doi: 10.1016/j.oceaneng.2019.01.041
    [7] 邱显焱,汤迎红. 附加单个动力吸振器的扬矿子系统纵向振动仿真分析研究[J]. 机械强度,2014,36(3): 335-339.

    QIU Xianyan, TANG Yinghong. Simulation study of longitudinal vibration for lifting pipe with single dynamic vibration absorber[J]. Journal of Mechanical Strength, 2014, 36(3): 335-339.
    [8] 肖林京,左帅,于志豪. 深海采矿扬矿管的纵向振动分析[J]. 科学技术与工程,2020,20(18): 7213-7219.

    XIAO Linjing, ZUO Shuai, YU Zhihao. Longitudinal vibrations analysis of lifting pipe in deep-sea mining[J]. Science Technology and Engineering, 2020, 20(18): 7213-7219.
    [9] 肖林京,刘强,梁彬. 基于波流联合作用的深海采矿扬矿管纵向振动分析[J]. 矿业研究与开发,2019,39(11): 147-150.

    XIAO Linjing, LIU Qiang, LIANG Bin. Longitudinal vibration analysis of hoisting pipe in deep-sea mining based on combination action of wave and current[J]. Mining Research and Development, 2019, 39(11): 147-150.
    [10] LIU Q, XIAO L J. Analysis and research on longitudinal vibration characteristics of deep sea mining pipe based on finite element method[J]. Mathematical Problems in Engineering, 2020, 3: 8219794.1-8219794.18.
    [11] SPARKS C. Transverse modal vibrations of vertical tensioned risers. a simplified analytical approach[J]. Oil & Gas Science and Technology, 2002, 57(1): 71-86.
    [12] SOLTANAHMADI A. Determination of flexible riser natural frequencies using Fourier analysis[J]. Marine Structures, 1992, 5(2/3): 193-203.
    [13] CHENG Y, VANDIVER J K, MOE G. The linear vibration analysis of marine risers using the wkb-based dynamic stiffness method[J]. Journal of Sound and Vibration, 2002, 251(4): 750-760. doi: 10.1006/jsvi.2001.3843
    [14] XI L Y, LI X F, TANG G J. Free vibration of standing and hanging gravity-loaded Rayleigh cantilevers[J]. International Journal of Mechanical Sciences, 2013, 66: 233-238. doi: 10.1016/j.ijmecsci.2012.11.013
    [15] WU Q, YANG J M, GUO X X, et al. Influence of irregular waves on the dynamic response of a vertical transport system for deep sea mining[J]. Ocean Engineering, 2021, 229: 108443.1-108443.18.
    [16] 王明峰. 深海采矿船运动模拟平台系统控制方法研究[D]. 长沙: 中南大学, 2012.
    [17] SONG Q H, JIANG H Y, SONG Q J, et al. Vibration characteristics and reduction analysis of lifting pipe under ocean current[J]. Shock and Vibration, 2021, 2021: 2778243.1-2778243.20.
    [18] CHEN W M, LI M, GUO S X, et al. Dynamic analysis of coupling between floating top-end heave and riser’s vortex-induced vibration by using finite element simulations[J]. Applied Ocean Research, 2014, 48: 1-9. doi: 10.1016/j.apor.2014.07.005
    [19] 操芹,夏鹏飞,汪轲,等. 基于模态分析的某皮卡发动机罩分析方法研究[J]. 汽车实用技术,2015(5): 1-3,6. doi: 10.3969/j.issn.1671-7988.2015.05.001

    CAO Qin, XIA Pengfei, WANG Ke, et al. Based on modal analysis of a pickup hood analysis method research[J]. Automobile Applied Technology, 2015(5): 1-3,6. doi: 10.3969/j.issn.1671-7988.2015.05.001
    [20] 王文明. ABAQUS有限元分析与案例精通: 在海洋石油工程中的应用[M]. 北京: 机械工业出版社, 2017.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  136
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 修回日期:  2021-09-27
  • 刊出日期:  2021-10-21

目录

    /

    返回文章
    返回