• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

方中空不锈钢管混凝土短柱轴压承载力性能

唐红元 廖静 刘瑞忠 胡晓维

唐红元, 廖静, 刘瑞忠, 胡晓维. 方中空不锈钢管混凝土短柱轴压承载力性能[J]. 西南交通大学学报, 2023, 58(2): 421-429. doi: 10.3969/j.issn.0258-2724.20210388
引用本文: 唐红元, 廖静, 刘瑞忠, 胡晓维. 方中空不锈钢管混凝土短柱轴压承载力性能[J]. 西南交通大学学报, 2023, 58(2): 421-429. doi: 10.3969/j.issn.0258-2724.20210388
TANG Hongyuan, LIAO Jing, LIU Ruizhong, HU Xiaowei. Bearing Capacity of Concrete-Filled Double Skin Stub Columns with Square outer Stainless Steel tube Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 421-429. doi: 10.3969/j.issn.0258-2724.20210388
Citation: TANG Hongyuan, LIAO Jing, LIU Ruizhong, HU Xiaowei. Bearing Capacity of Concrete-Filled Double Skin Stub Columns with Square outer Stainless Steel tube Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 421-429. doi: 10.3969/j.issn.0258-2724.20210388

方中空不锈钢管混凝土短柱轴压承载力性能

doi: 10.3969/j.issn.0258-2724.20210388
基金项目: 教育部春晖计划合作项目(Z2016156)
详细信息
    作者简介:

    唐红元(1974—),男,教授,博士,研究方向为钢结构及组合结构,E-mail:tanghyseu@163.com

  • 中图分类号: TU398.9

Bearing Capacity of Concrete-Filled Double Skin Stub Columns with Square outer Stainless Steel tube Under Axial Compression

  • 摘要:

    为促进方中空不锈钢管混凝土构件在土木工程中的应用,以不锈钢外管厚度和混凝土强度为变量的6组试件为研究对象,首先,进行轴压试验,得到了不同试件在轴压荷载作用下的破坏模式、荷载-位移曲线、荷载-应变曲线,并进一步分析了不锈钢方管宽厚比、核心混凝土强度以及不锈钢方管约束效应系数对方中空不锈钢管混凝土短柱极限承载力的影响;然后,初步讨论了倒角对强度和延性的影响,提出了避免内管先于外管屈曲的最小厚度计算方法;最后,基于试验结果以及已有文献数据,采用拟合方法推导了方中空不锈钢管混凝土短柱的抗压承载力计算式,并与已有文献的简化模型及国外主要规范的计算结果进行对比. 研究结果表明:试件宽厚比由34.9降至20.9,极限承载力的提升率平均为98.5%,核心混凝土强度由C40提升至C60时,试件极限承载力的提升率平均为7.3%;短柱的轴压极限承载力随约束效应系数近似呈线性增加,约束效应系数$ \xi $越大,短柱的承载力越高;本文得到的计算式可以较好地预测方中空不锈钢管混凝土短柱的轴压承载力.

     

  • 图 1  试件加载系统和测点布置

    Figure 1.  Test setup and measuring point arrangement

    图 2  试件破坏形式

    Figure 2.  Failure modes of the specimens

    图 3  试件位移-荷载曲线

    Figure 3.  Load-displacement curves

    图 4  荷载-应变曲线

    Figure 4.  Load-strain curves

    图 5  约束效应系数对承载力的影响

    Figure 5.  Influence of constraint effect coefficient on bearing capacity

    图 6  混凝土强度与宽厚比对承载力的影响

    Figure 6.  Influence of concrete strength andwidth-thickness ratio on bearing capacity

    图 7  拟合曲线

    Figure 7.  Regression curve

    图 8  试验值与计算值比值统计

    Figure 8.  Statistics of the ratio of experimental value to calculated value

    表  1  试件参数

    Table  1.   Measured parameters of all specimens

    试件编号D/mmd/mmto/mmti/mmL/mmr/mmti.min/mmfsyi,min/MPa
    AS120-3-40119.657.23.433.41359.150.66185
    S120-4-40120.757.64.183.51358.420.90336
    S120-5-40121.257.95.813.62359.051.12497
    S120-3-60119.857.83.423.47359.250.66183
    BS120-4-60120.657.64.143.51359.020.90332
    S120-5-60120.657.85.803.59358.851.12499
    下载: 导出CSV

    表  2  金属材料性能

    Table  2.   Measured material properties

    类型名称σ0.2/MPaE/GPaf0.2,c/MPaμn
    不锈钢S120-33632035790.38
    S120-455020010100.34
    S120-55862049990.34
    碳钢ϕ57-34302200.3
    下载: 导出CSV
  • [1] HAN L H, TAO Z, HUANG H, et al. Concrete-filled double skin (SHS outer and CHS inner) steel tubular beam-columns[J]. Thin-Walled Structures, 2004, 42(9): 1329-1355. doi: 10.1016/j.tws.2004.03.017
    [2] PAGOULATOU M, SHEEHAN T, DAI X H, et al. Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns[J]. Engineering Structures, 2014, 72: 102-112. doi: 10.1016/j.engstruct.2014.04.039
    [3] UENAKA K, KITOH H, SONODA K. Concrete filled double skin circular stub columns under compression[J]. Thin-Walled Structures, 2010, 48(1): 19-24. doi: 10.1016/j.tws.2009.08.001
    [4] HASSANEIN M F, KHAROOB O F, LIANG Q Q. Circular concrete-filled double skin tubular short columns with external stainless steel tubes under axial compression[J]. Thin-Walled Structures, 2013, 73: 252-263. doi: 10.1016/j.tws.2013.08.017
    [5] LI W, HAN L H, ZHAO X L. Axial strength of concrete-filled double skin steel tubular (CFDST) columns with preload on steel tubes[J]. Thin-Walled Structures, 2012, 56: 9-20. doi: 10.1016/j.tws.2012.03.004
    [6] GUO Z, CHEN Y, WANG Y, et al. Experimental study on square concrete-filled double skin steel tubular short columns[J]. Thin-Walled Structures, 2020, 156: 107017.1-107017.20.
    [7] AYOUGH P, SULONG N H R, IBRAHIM Z, et al. Nonlinear analysis of square concrete-filled double-skin steel tubular columns under axial compression[J]. Engineering Structures, 2020, 216: 110678.1-110678.26.
    [8] HASSANEIN M F, KHAROOB O F, GARGNER L. Behaviour and design of square concrete-filled double skin tubular columns with inner circular tubes[J]. Engineering Structures, 2015, 100: 410-424. doi: 10.1016/j.engstruct.2015.06.022
    [9] HASSANEIN M F, ELCHALAKANI M, KARRECH A, et al. Behaviour of concrete-filled double-skin short columns under compression through finite element modelling: SHS outer and SHS inner tubes[J]. Structures, 2018, 14: 358-375. doi: 10.1016/j.istruc.2018.04.006
    [10] 丛术平,彭敏,王继升,等. 方中空夹层钢管混凝土短柱轴压性能试验[J]. 中国科技论文,2019,14(10): 1085-1089.

    CONG Shuping, PENG Min, WANG Jisheng, et al. Experimental research on axial compression performance of square double skin steel tube short columns filled with concrete[J]. China Sciencepaper, 2019, 14(10): 1085-1089.
    [11] HUANG H, HAN L H, TAO Z, et al. Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns[J]. Journal of Constructional Steel Research, 2010, 66(4): 542-555. doi: 10.1016/j.jcsr.2009.09.014
    [12] HAN L H, LI Y J, LIAO F Y, et al. Concrete-filled double skin steel tubular (CFDST) columns subjected to long-term sustained loading[J]. Thin-Walled Structures, 2011, 49(12): 1534-1543. doi: 10.1016/j.tws.2011.08.001
    [13] HAN L H, HUANG H, TAO Z, et al. Concrete-filled double skin steel tubular (CFDST) beam-columns subjected to cyclic bending[J]. Engineering Structures, 2006, 28(12): 1698-1714. doi: 10.1016/j.engstruct.2006.03.004
    [14] WANG F Y, YOUNG B, GARDNER L, et al. CFDST sections with square stainless steel outer tubes under axial compression: experimental investigation, numerical modelling and design[J]. Engineering Structures, 2020, 207: 110189.1-110189.13. doi: 10.1016/j.engstruct.2020.110189
    [15] WANG F C, HAN L H, LI W, et al. Analytical behavior of CFDST stub columns with external stainless steel tubes under axial compression[J]. Thin-Walled Structures, 2018, 127: 756-768. doi: 10.1016/j.tws.2018.02.021
    [16] HAN L H, REN Q X, LI W, et al. Tests on stub stainless steel-concrete-carbon steel double-skin tubular (DST) columns[J]. Journal of Constructional Steel Research, 2011, 67(3): 437-452. doi: 10.1016/j.jcsr.2010.09.010
    [17] TANG H Y, CHEN J L, FAN L Y, et al. Experimental investigation of FRP-confined concrete-filled stainless steel tube stub columns under axial compression[J]. Thin-Walled Structures, 2020, 146: 106483.1-106483.14.
    [18] 唐红元,李政周,范璐瑶,等. 矩形不锈钢管混凝土短柱轴压性能试验研究[J]. 西南交通大学学报,2022,57(4): 855-864.

    TANG Hongyuan, LI Zhengzhou, FAN Luyao, et al. Experimental investigation on behavior of rectangular concrete-filled stainless steel tubular stub columns under axial loading[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 855-864.
    [19] 中国建筑科学研究院, 中华人民共和国建设部, 国家质量监督检验检疫总局. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2002.
    [20] 朱浩川,姚谏. 不锈钢材料的应力-应变模型[J]. 空间结构,2011,17(1): 62-69.

    ZHU Haochuan, YAO Jian. Stress-strain model for stainless steel[J]. Spatial Structures, 2011, 17(1): 62-69.
    [21] CRUISE R B, GARDNER L. Strength enhancements induced during cold forming of stainless steel sections[J]. Journal of Constructional Steel Research, 2008, 64(11): 1310-1316. doi: 10.1016/j.jcsr.2008.04.014
    [22] WANG Y L, CAI G, LARBI A S, et al. Monotonic axial compressive behaviour and confinement mechanism of square CFRP-steel tube confined concrete[J]. Engineering Structures, 2020, 217: 110802.1-110802.16.
    [23] PHAM T M, HADI M N S. Stress prediction model for FRP confined rectangular concrete columns with rounded corners[J]. Journal of Composites for Construction, 2014, 18(1): 04013019.1-04013019.10.
    [24] HAN T H, STALLINGS J M, KANG Y J, et al. Nonlinear concrete model for double-skinned composite tubular columns[J]. Construction and Building Materials, 2010, 24(12): 2542-2553. doi: 10.1016/j.conbuildmat.2010.06.001
    [25] KERR A D, SOIFER M T. The linearization of the prebuckling state and its effect on the determined instability loads[J]. Journal of Applied Mechanics, 1969, 36(4): 775-783. doi: 10.1115/1.3564770
    [26] European Committee for Standardization. Eurocode 4: design of composite steel and concrete structures part1-1: general rules and rules for buildings[S]. London: British Standards Institution, 1994.
    [27] American Concrete Institute (ACI). Building code requirements for structural concrete and commentary: ACI 318-99[S]. Detroit: American Concrete Institute, 1999.
    [28] American Institute of Steel Construction. Specification for structural steel buildings: AISC 360 [S]. Chicago: [s.n.], 2016
    [29] Standards Australia. Bridge design, part 6: steel and composite construction: AS5100.6—2004[S]. Sydney: Standards Australia International Ltd., 2004.
    [30] HAN L H, ZHAO X L, TAO Z. Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns[J]. Steel and Composite Structures, 2001, 1(1): 51-74. doi: 10.12989/scs.2001.1.1.051
    [31] 韩林海. 钢管混凝土结构——理论与实践[M]. 3版. 北京: 科学出版社, 2016.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  318
  • HTML全文浏览量:  109
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 修回日期:  2021-10-18
  • 网络出版日期:  2023-01-07
  • 刊出日期:  2021-12-13

目录

    /

    返回文章
    返回