• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

红层泥岩加卸载力学特性与能量演化机制

张磊 李兵 朱宝龙 罗波

张磊, 李兵, 朱宝龙, 罗波. 红层泥岩加卸载力学特性与能量演化机制[J]. 西南交通大学学报, 2023, 58(3): 592-602, 612. doi: 10.3969/j.issn.0258-2724.20210387
引用本文: 张磊, 李兵, 朱宝龙, 罗波. 红层泥岩加卸载力学特性与能量演化机制[J]. 西南交通大学学报, 2023, 58(3): 592-602, 612. doi: 10.3969/j.issn.0258-2724.20210387
ZHANG Lei, LI Bing, ZHU Baolong, LUO Bo. Loading and Unloading Mechanical Properties and Energy Evolution Mechanism of Red-Bed Mudstone[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 592-602, 612. doi: 10.3969/j.issn.0258-2724.20210387
Citation: ZHANG Lei, LI Bing, ZHU Baolong, LUO Bo. Loading and Unloading Mechanical Properties and Energy Evolution Mechanism of Red-Bed Mudstone[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 592-602, 612. doi: 10.3969/j.issn.0258-2724.20210387

红层泥岩加卸载力学特性与能量演化机制

doi: 10.3969/j.issn.0258-2724.20210387
基金项目: 国家自然科学基金(41672342);四川省应用基础研究项目(2019YJ0555);四川省交通运输科技项目(2021-A-07)
详细信息
    作者简介:

    张磊(1980—),男,高级工程师,研究方向为岩土工程,E-mail:19104921@qq.com

    通讯作者:

    李兵(1976—),男,高级工程师,研究方向为地质工程,E-mail:634712009@qq.com

  • 中图分类号: TU458.3

Loading and Unloading Mechanical Properties and Energy Evolution Mechanism of Red-Bed Mudstone

  • 摘要:

    为研究红层泥岩的力学特性和能量演化规律,基于5种不同围压梯度(200、250、300、350、400 kPa)及轴压与围压不等速率的应力路径,以四川遂宁地区红层泥岩为例开展了室内循环加卸载试验,得到围压效应对红层泥岩力学特性、总应变能密度、弹性应变能密度、耗散能密度的影响,以及应力-应变与能量之间的演化规律. 研究结果表明:从初始加卸载至试验结束,轴向应力输入的总能量密度、弹性应变能密度以及耗散能密度总体呈先增大后减小的“正态分布”形式;在峰前阶段,弹性应变能密度与耗散能密度间的差值会随着循环加卸载次数的增加而增大;围压的侧限作用提高了试样承载能力,总能量密度、弹性应变能密度以及耗散能密度随着围压的增大而增大;在峰后阶段,当围压≤300 kPa时,耗散能密度低于弹性应变能密度,而围压>300 kPa时,耗散能密度高于弹性应变能密度,围压增大会进一步抑制试样破坏后弹性应变能密度的释放;相同围压下,随着干湿循环次数的增加,干燥、饱和状态下的抗压强度和弹性应变能密度均呈负相关关系;相同干湿循环次数,干燥状态的抗压强度和弹性应变能密度比饱和状态高,呈正相关关系.

     

  • 图 1  岩样示意

    Figure 1.  Diagram of rock sample

    图 2  岩样矿物成分

    Figure 2.  Mineral composition of the rock sample

    图 3  三轴加卸载试验的应力路径

    Figure 3.  Schematic diagram of stress path of triaxial loading and unloading test

    图 4  单轴压缩试验

    Figure 4.  Uniaxial compression test

    图 5  试样破坏模式

    Figure 5.  Sample failure mode

    图 6  三轴循环加卸载全过程应力-应变曲线

    Figure 6.  Stress-strain curves of triaxial cyclic loading and unloading

    图 7  试样破坏模式

    Figure 7.  Sample failure mode

    图 8  加卸载应力-应变包络曲线示意

    Figure 8.  Schematic diagram of the stress-strain envelope curve of loading and unloading

    图 9  强度包络曲线与Kf强度线

    Figure 9.  Intensity envelope curves and Kf intensity line

    图 10  加卸载应力-应变包络曲线示意

    Figure 10.  Schematic diagram of the stress-strain envelope curve of loading and unloading

    图 11  循环加卸载岩样能量密度计算

    Figure 11.  Calculation of energy density of cyclic loading and unloading rock samples

    图 12  岩样的能量演化

    Figure 12.  Energy evolution of rock samples

    图 13  干燥状态应力-应变与能量密度关系

    Figure 13.  Relationships between stress-strain and energy density in the dry state

    图 14  饱和状态应力-应变与能量密度关系

    Figure 14.  Relationships between stress-strain and energy density in saturated state

    表  1  岩样基本物理性质

    Table  1.   Basic physical properties of rock samples

    试样编号天然含
    水率/%
    黏聚力/
    kPa
    内摩擦
    角/(°)
    天然密度/
    (g·cm−3
    E111.464240.62.12
    E212.363639.12.04
    E313.261837.71.98
    下载: 导出CSV

    表  2  不同围压卸荷试验结果

    Table  2.   Results of different confining pressure unloading tests

    试样
    编号
    平均初
    始围压/
    kPa
    平均破
    坏围压/
    kPa
    平均抗
    剪强度/
    kPa
    平均泊
    松比
    平均剪
    切模量/
    kPa
    E4、E520075.06340.31238
    E6、E725062.57020.33265
    E8、E930088.08340.33315
    E10、E11350134.08710.31326
    E12、E13400174.09830.32382
    下载: 导出CSV
  • [1] 谢和平,彭瑞东,鞠杨,等. 岩石破坏的能量分析初探[J]. 岩石力学与工程学报,2005,24(15): 2603-2608. doi: 10.3321/j.issn:1000-6915.2005.15.001

    XIE Heping, PENG Ruidong, JU Yang, et al. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2603-2608. doi: 10.3321/j.issn:1000-6915.2005.15.001
    [2] 谢和平,彭瑞东,鞠杨. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报,2004,23(21): 3565-3570. doi: 10.3321/j.issn:1000-6915.2004.21.001

    XIE Heping, PENG Ruidong, JU Yang. Energy dissipation of rock deformation and fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3565-3570. doi: 10.3321/j.issn:1000-6915.2004.21.001
    [3] 尤明庆,华安增. 岩石试样破坏过程的能量分析[J]. 岩石力学与工程学报,2002,21(6): 778-781. doi: 10.3321/j.issn:1000-6915.2002.06.004

    YOU Mingqing, HUA Anzeng. Energy analysis on failure process of rock specimens[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6): 778-781. doi: 10.3321/j.issn:1000-6915.2002.06.004
    [4] 谢和平,鞠杨,黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报,2005,24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001

    XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
    [5] GAZIEV E. Rupture energy evaluation for brittle materials[J]. International Journal of Solids and Structures, 2001, 38(42/43): 7681-7690.
    [6] 杨永明,鞠杨,陈佳亮,等. 三轴应力下致密砂岩的裂纹发育特征与能量机制[J]. 岩石力学与工程学报,2014,33(4): 691-698. doi: 10.13722/j.cnki.jrme.2014.04.005

    YANG Yongming, JU Yang, CHEN Jialiang, et al. Cracks development features and energy mechanism of dense sandstone subjected to triaxial stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 691-698. doi: 10.13722/j.cnki.jrme.2014.04.005
    [7] MUNOZ H, TAHERI A, CHANDA E K. Rock drilling performance evaluation by an energy dissipation based rock brittleness index[J]. Rock Mechanics and Rock Engineering, 2016, 49(8): 3343-3355. doi: 10.1007/s00603-016-0986-0
    [8] 田勇,俞然刚. 不同围压下灰岩三轴压缩过程能量分析[J]. 岩土力学,2014,35(1): 118-122,129. doi: 10.16285/j.rsm.2014.01.019

    TIAN Yong, YU Rangang. Energy analysis of limestone during triaxial compression under different confining pressures[J]. Rock and Soil Mechanics, 2014, 35(1): 118-122,129. doi: 10.16285/j.rsm.2014.01.019
    [9] 黄达,谭清,黄润秋. 高应力强卸荷条件下大理岩损伤破裂的应变能转化过程机制研究[J]. 岩石力学与工程学报,2012,31(12): 2483-2493. doi: 10.3969/j.issn.1000-6915.2012.12.012

    HUANG Da, TAN Qing, HUANG Runqiu. Mechanism of strain energy conversion process for marble damage and fracture under high stress and rapid unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2483-2493. doi: 10.3969/j.issn.1000-6915.2012.12.012
    [10] 张黎明,高速,王在泉,等. 大理岩加卸荷破坏过程的能量演化特征分析[J]. 岩石力学与工程学报,2013,32(8): 1572-1578.

    ZHANG Liming, GAO Su, WANG Zaiquan, et al. Analysis of marble failure energy evolution under loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1572-1578.
    [11] MENG Q B, ZHANG M W, ZHANG Z Z, et al. Experimental research on rock energy evolution under uniaxial cyclic loading and unloading compression[J]. Geotechnical Testing Journal, 2018, 41(4): 717-729.
    [12] MENG Q B, ZHANG M W, HAN L J, et al. Effects of acoustic emission and energy evolution of rock specimens under the uniaxial cyclic loading and unloading compression[J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 3873-3886. doi: 10.1007/s00603-016-1077-y
    [13] 王向宇,周宏伟,钟江城,等. 三轴循环加卸载下深部煤体损伤的能量演化和渗透特性研究[J]. 岩石力学与工程学报,2018,37(12): 2676-2684. doi: 10.13722/j.cnki.jrme.2018.0697

    WANG Xiangyu, ZHOU Hongwei, ZHONG Jiangcheng, et al. Study on energy evolution and permeability characteristics of deep coal damage under triaxial cyclic loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2676-2684. doi: 10.13722/j.cnki.jrme.2018.0697
    [14] 杨小彬,程虹铭,吕嘉琦,等. 三轴循环荷载下砂岩损伤耗能比演化特征研究[J]. 岩土力学,2019,40(10): 3751-3757,3766. doi: 10.16285/j.rsm.2018.2166

    YANG Xiaobin, CHENG Hongming, LÜ Jiaqi, et al. Energy consumption ratio evolution law of sandstones under triaxial cyclic loading[J]. Rock and Soil Mechanics, 2019, 40(10): 3751-3757,3766. doi: 10.16285/j.rsm.2018.2166
    [15] 王晓强,姚华彦,代领,等. 皖南红层软岩崩解特性试验分析[J]. 地下空间与工程学报,2021,17(3): 683-691.

    WANG Xiaoqiang, YAO Huayan, DAI Ling, et al. Experimental study on slaking characteristics of red-bed soft rock in southern Anhui Province[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(3): 683-691.
    [16] 纪宇,梁庆国,郭俊彦,等. 红层软岩地区高速铁路深路堑基底变形规律研究[J]. 铁道科学与工程学报,2021,18(3): 572-580. doi: 10.19713/j.cnki.43-1423/u.T20200425

    JI Yu, LIANG Qingguo, GUO Junyan, et al. Study on deformation law of deep foundation of high speed railway in red layer soft rock area[J]. Journal of Railway Science and Engineering, 2021, 18(3): 572-580. doi: 10.19713/j.cnki.43-1423/u.T20200425
    [17] 李安润,邓辉,王小雪,等. 饱水-失水循环条件下红层泥岩蠕变特性及本构模型研究[J]. 工程地质学报,2021,29(3): 843-850. doi: 10.13544/j.cnki.jeg.2020-098

    LI Anrun, DENG Hui, WANG Xiaoxue, et al. Research on creep characteristics and constitutive model of red bed mudstone under saturated-dehydrated cycle[J]. Journal of Engineering Geology, 2021, 29(3): 843-850. doi: 10.13544/j.cnki.jeg.2020-098
    [18] 周其健,马德翠,邓荣贵,等. 地热系统作用下红层软岩力学性能试验研究[J]. 岩土力学,2020,41(10): 3333-3342. doi: 10.16285/j.rsm.2020.0035

    ZHOU Qijian, MA Decui, DENG Ronggui, et al. Experimental study on mechanical properties of red-layer soft rock in geothermal systems[J]. Rock and Soil Mechanics, 2020, 41(10): 3333-3342. doi: 10.16285/j.rsm.2020.0035
    [19] 余云燕,罗崇亮,包得祥,等. 兰州地区红层泥岩物理力学特性试验[J]. 兰州交通大学学报,2019,38(5): 1-6. doi: 10.3969/j.issn.1001-4373.2019.05.001

    YU Yunyan, LUO Chongliang, BAO Dexiang, et al. Experimental study on physical and mechanical properties of red mudstone in Lanzhou area[J]. Journal of Lanzhou Jiaotong University, 2019, 38(5): 1-6. doi: 10.3969/j.issn.1001-4373.2019.05.001
    [20] 徐颖,李成杰,郑强强,等. 循环加卸载下泥岩能量演化与损伤特性分析[J]. 岩石力学与工程学报,2019,38(10): 2084-2091. doi: 10.13722/j.cnki.jrme.2019.0153

    XU Ying, LI Chengjie, ZHENG Qiangqiang, et al. Analysis of energy evolution and damage characteristics of mudstone under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2084-2091. doi: 10.13722/j.cnki.jrme.2019.0153
    [21] 秦涛,段燕伟,刘志,等. 砂岩循环加卸载过程能量的演化与损伤特性[J]. 黑龙江科技大学学报,2020,30(1): 8-15. doi: 10.3969/j.issn.2095-7262.2020.01.002

    QIN Tao, DUAN Yanwei, LIU Zhi, et al. Energy evolution and damage characteristics of sandstone under cyclic loading and unloading[J]. Journal of Heilongjiang University of Science and Technology, 2020, 30(1): 8-15. doi: 10.3969/j.issn.2095-7262.2020.01.002
    [22] 孟庆彬,王从凯,黄炳香,等. 三轴循环加卸载条件下岩石能量演化及分配规律[J]. 岩石力学与工程学报,2020,39(10): 2047-2059. doi: 10.13722/j.cnki.jrme.2020.0208

    MENG Qingbin, WANG Congkai, HUANG Bingxiang, et al. Rock energy evolution and distribution law under triaxial cyclic loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2047-2059. doi: 10.13722/j.cnki.jrme.2020.0208
    [23] 陈纪昌. 库区红层泥岩水化特性及干湿循环作用下的渐进损伤研究[J]. 中国农村水利水电,2021(3): 143-147,152. doi: 10.3969/j.issn.1007-2284.2021.03.028

    CHEN Jichang. Research on the hydration characteristics and progressive damage of red bed mudstone under dry-wet cycle in reservoir areas[J]. China Rural Water and Hydropower, 2021(3): 143-147,152. doi: 10.3969/j.issn.1007-2284.2021.03.028
    [24] 国家质量技术监督局, 中华人民共和国住建部. 工程岩体试验方法标准: GB/T 50266—2013[S]. 北京: 中国计划出版社, 2013.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  146
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-25
  • 修回日期:  2021-11-02
  • 网络出版日期:  2022-12-10
  • 刊出日期:  2021-11-03

目录

    /

    返回文章
    返回