Numerical Simulation of In-plane Tensile Properties of High-Strength Steel Wire Mesh
-
摘要:
采用高强钢丝编织的格栅网在边坡浅层地质灾害和军事工程防护领域均有着广泛的应用. 由于影响格栅网面内力学性能的参数较多,精细化的数值分析可为优化格栅网的制备工艺充分发挥其力学性能提供依据. 为此,基于ANSYS Mechanical模块,在格栅网力学性能理论研究基础上,考虑钢丝材料的非线性应力强化效应、格栅网几何构造形成的各向异性以及连接节点处编织工艺造成的接触和状态非线性等因素,开展了格栅网面内拉伸力学性能的非线性数值分析. 结果表明:数值计算与试验获得的格栅网应力应变变化趋势基本一致;与试验结果相比,数值计算获得的格栅网等效弹性模型(刚度)在
Y 方向误差为10.6%,X 方向误差为18.5%;数值计算获得的格栅网极限应力应变在Y 方向误差分别为10.0%和12.8%,在X 方向误差分别为0.7%和18.3%.Abstract:The mesh woven with high-strength steel wires are widely used in fields of shallow geological disasters of slope and military engineering protection. As there are many weaving process parameters that affect the in-plane mechanical properties of the mesh, a refined numerical analysis can provide a basis for optimizing the mesh preparation process to give full play to its mechanical properties. Based on ANSYS Mechanical module and theoretical study of the mechanical properties of the mesh, a nonlinear numerical analysis of the mechanical properties of the wire mesh in plane tension was carried out taking into consideration the nonlinear stress strengthening effect of the steel wire material, the anisotropy formed by the geometric structure of the mesh, and the contact and state nonlinearity caused by the weaving process at the connection nodes of the mesh. Results show that the variation trend of stress and strain of the mesh obtained by numerical calculation is basically consistent with that obtained by experiment. Compared with the experimental results, the error of the equivalent elastic model (stiffness) of the mesh obtained by numerical calculation is 10.6% in the
Y direction and is 18.5% in theX direction. The errors of ultimate stress and ultimate strain obtained by the numerical calculation are 10.0% and 12.8% in theY direction and are 0.7% and 18.3% in theX direction, respectively.-
Key words:
- high-strength steel wire /
- wire mesh /
- equivalent elastic modulus /
- non-linearity /
- numerical simulation
-
表 1 应力-应变拟合的等效弹性模量(刚度)
Table 1. Equivalent elastic modulus obtained by stress-strain curve fitting
项目 Y 向 X 向 试验[19] 1929.7 178.6 数值计算 2133.3 145.5 误差/% 10.6 18.5 -
[1] 汪敏. 柔性防护技术和柔性棚洞的设计及工程应用研究[D]. 重庆: 后勤工程学院, 2011. [2] 汪敏,石少卿,崔廉明,等. 三开间单跨柔性棚洞在落石冲击作用下的试验研究[J]. 土木工程学报,2018,51(5): 37-47.WANG Min, SHI Shaoqing, CUI Lianming, et al. Experimental investigation on three-bay and single-span flexible rock-shed under impact of rockfall[J]. China Civil Engineering Journal, 2018, 51(5): 37-47. [3] 赵世春,余志祥,赵雷,等. 被动防护网系统强冲击作用下的传力破坏机制[J]. 工程力学,2016,33(10): 24-34. doi: 10.6052/j.issn.1000-4750.2016.06.ST08ZHAO Shichun, YU Zhixiang, ZHAO Lei, et al. Damage mechanism of rockfall barriers under strong impact loading[J]. Engineering Mechanics, 2016, 33(10): 24-34. doi: 10.6052/j.issn.1000-4750.2016.06.ST08 [4] 余志祥,张丽君,骆丽茹,等. 韧性挑篷防护网系统抗冲击性能研究[J]. 岩石力学与工程学报,2020,39(12): 2505-2516.YU Zhixiang, ZHANG Lijun, LUO Liru, et al. Study on impact resistance of a resilient steel canopy protection system[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2505-2516. [5] 俞棠荣. 金属网对弹体主动诱爆拦截的作用机理研究[D]. 重庆: 陆军勤务学院, 2019. [6] 刘一鸣,熊自明,王德荣,等. 飞网弹主动防护拦截系统初探[J]. 防护工程,2018,40(6): 30-35.LIU Yiming, XIONG Ziming, WANG Derong, et al. Preliminary research on active protection interception system of flying net projectile[J]. Protective Engineering, 2018, 40(6): 30-35. [7] 崔廉明,石少卿,汪敏,等. 多位置分布配重下引导式落石缓冲系统冲击防护性能研究[J]. 岩石力学与工程学报,2019,38(2): 332-342. doi: 10.13722/j.cnki.jrme.2018.1052CUI Lianming, SHI Shaoqing, WANG Min, et al. Research on the impact protection performance of the rockfall attenuator system under multiposition distributed counterweights conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 332-342. doi: 10.13722/j.cnki.jrme.2018.1052 [8] 郭立平,余志祥,骆丽茹,等. 基于力流等效的环形网顶破力学行为解析方法[J]. 工程力学,2020,37(5): 129-139.GUO Liping, YU Zhixiang, LUO Liru, et al. An analytical method of puncture mechanical behavior of ring nets based on the load path equivalence[J]. Engineering Mechanics, 2020, 37(5): 129-139. [9] 余志祥,严绍伟,许浒,等. 活塞杆点支式柔性缓冲系统冲击力学行为[J]. 土木工程学报,2018,51(11): 61-69,112.YU Zhixiang, YAN Shaowei, XU Hu, et al. Mechanical behavior of piston rod point-supported flexible buffer system[J]. China Civil Engineering Journal, 2018, 51(11): 61-69,112. [10] ALBABA A, LAMBERT S, KNEIB F, et al. DEM modeling of a flexible barrier impacted by a dry granular flow[J]. Rock Mechanics and Rock Engineering, 2017, 50(11): 3029-3048. doi: 10.1007/s00603-017-1286-z [11] ESCALLON J P, WENDELER C, CHATZI E, et al. Parameter identification of rockfall protection barrier components through an inverse formulation[J]. Engineering Structure, 2014, 77: 1-16. [12] 汪敏,石少卿,刘盈丰,等. 防落石柔性棚洞的耗能性能分析及优化设计[J]. 振动与冲击,2018,37(1): 216-222.WANG Min, SHI Shaoqing, LIU Yingfeng, et al. Eneigy dissipation analysis and optimum design on a flexible rock-shed for rockfall protection[J]. Journal of Vibration and Shock, 2018, 37(1): 216-222. [13] VON BOETTICHER A, VOLKWEIN A. Numerical modelling of chain-link steel wire nets with discrete elements[J]. Canadian Geotechnical Journal, 2019, 56(3): 398-419. doi: 10.1139/cgj-2017-0540 [14] DEL COZDÍAZ J J, NIETO P J G, FRESNO D C, et al. Non-linear analysis of cable networks by FEM and experimental validation[J]. International Journal of Computer Mathematics, 2009, 86(2): 301-313. doi: 10.1080/00207160801965339 [15] ESCALLÓN J P, BOETTICHER V, WENDELER C, et al. Mechanics of chain-link wire nets with loose connections[J]. Engineering Structures, 2015, 101: 68-87. doi: 10.1016/j.engstruct.2015.07.005 [16] 全国钢标准化技术委员会. 钢丝及钢丝制品(通用试验方法): GB/T 36915—2019[S]. 北京: 中国标准化出版社, 2019. [17] 齐欣,余志祥,张丽君,等. 被动柔性防护系统对落石冲击作用的传播效应[J]. 西南交通大学学报,2020,55(5): 1085-1093. doi: 10.3969/j.issn.0258-2724.20180442QI Xin, YU Zhixiang, ZHANG Lijun, et al. Propagation effect of passive flexible protection system on rockfall impact[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1085-1093. doi: 10.3969/j.issn.0258-2724.20180442 [18] SASIHARAN N, MUHUNTHAN B, BADGER T C, et al. Numerical analysis of the performance of wire mesh and cable net rockfall protection systems[J]. Engineering Geology, 2006, 88(1/2): 121-132. [19] CASTRO D F. Study and analysis of flexible membranes as support elements for the stabilization of land-fill slopes[D]. Spain: University of Cantabria, 2000