• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于氢储能的热电联供型微电网优化调度方法

李奇 邹雪俐 蒲雨辰 陈维荣 赵淑丹

李奇, 邹雪俐, 蒲雨辰, 陈维荣, 赵淑丹. 基于氢储能的热电联供型微电网优化调度方法[J]. 西南交通大学学报, 2023, 58(1): 9-21. doi: 10.3969/j.issn.0258-2724.20210348
引用本文: 李奇, 邹雪俐, 蒲雨辰, 陈维荣, 赵淑丹. 基于氢储能的热电联供型微电网优化调度方法[J]. 西南交通大学学报, 2023, 58(1): 9-21. doi: 10.3969/j.issn.0258-2724.20210348
LI Qi, ZOU Xueli, PU Yuchen, CHEN Weirong, ZHAO Shudan. Optimal Schedule of Combined Heat-Power Microgrid Based on Hydrogen Energy Storage[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 9-21. doi: 10.3969/j.issn.0258-2724.20210348
Citation: LI Qi, ZOU Xueli, PU Yuchen, CHEN Weirong, ZHAO Shudan. Optimal Schedule of Combined Heat-Power Microgrid Based on Hydrogen Energy Storage[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 9-21. doi: 10.3969/j.issn.0258-2724.20210348

基于氢储能的热电联供型微电网优化调度方法

doi: 10.3969/j.issn.0258-2724.20210348
基金项目: 国家自然科学基金(51977181);霍英东教育基金会高等院校青年教师基金 (171104)
详细信息
    作者简介:

    李奇(1984—),男,教授,博士,博士生导师,研究方向为轨道交通新能源技术、综合能源系统运行与控制等,E-mail:liqi0800@163.com

    通讯作者:

    陈维荣(1965—),男,教授,博士,博士生导师,研究方向为轨道交通新能源技术,电力系统及其自动化,燃料电池技术及应用,E-mail:wrchen@swjtu.cn

  • 中图分类号: TM911.4

Optimal Schedule of Combined Heat-Power Microgrid Based on Hydrogen Energy Storage

  • 摘要:

    针对质子交换膜燃料电池和电解槽的热电联供特性,为避免氢能系统的热能浪费并进一步提高氢能系统的效率,搭建了一种考虑氢能系统的热电联供型光伏/风机/燃料电池/蓄电池/电锅炉/燃气锅炉微电网系统,提出一种包括日前调度与实时优化的两阶段优化调度方法. 所建系统考虑了电氢转换时的余热回收,将氢能系统作为热电氢耦合设备,实现了电、热、氢能的协调利用与相互转换,有效提高了能量利用率. 在第一阶段调度中,根据日前的风光发电出力及负荷需求预测,以微电网整体运行成本最小为目标,采用混合整数线性规划方法实现日前最优全局调度;在第二阶段调度中,根据超短期预测结果,使用模型预测控制嵌入混合整数二次规划算法,减小预测误差带来的经济性影响. 最后,通过冬、夏及过渡季典型日算例可知,本文所提出的两阶段调度方法在3种季节典型日的总成本较日前全局最优调度分别降低了3.24%、0.76%、1.66%;通过在不同场景下对本文所提方法进行仿真验证,相较于不考虑能量耦合的基础场景,考虑热电耦合系统和热电氢耦合系统时,优化调度的总成本和污染气体治理成本分别降低了15.58%、24.93%. 结果表明:本文所提方法具有一定的实时性及通用性,能够满足微网内热电负荷需求,实现稳定独立运行,改善系统的运行经济性与环保性.

     

  • 图 1  热电氢联供型微电网系统结构

    Figure 1.  Structure of combined heat-power-hydrogen microgrid system

    图 2  氢储能系统原理

    Figure 2.  Schematic of hydrogen energy storage system

    图 3  两阶段优化调度求解流程

    Figure 3.  Solution flow of two-stage optimal scheduling

    图 4  LSTM预测流程

    Figure 4.  Flow chart of LSTM forecast

    图 5  灰色预测流程

    Figure 5.  Flow chart of grey forecast

    图 6  日前优化结果

    Figure 6.  Day-ahead optimization results

    图 7  日内优化结果

    Figure 7.  Real-time optimization results

    表  1  日前优化成本和日内优化成本

    Table  1.   Day-ahead and real-time optimized cost

    成本项目冬季典型日夏季典型日过渡季典型日
    调度
    成本
    优化
    成本
    调度
    成本
    优化
    成本
    调度
    成本
    优化
    成本
    运维 436.78 435.00 226.02 221.54 317.08 312.65
    燃料 623.59 597.28 162.67 164.51 504.94 496.62
    污染气体治理 169.67 157.87 44.21 43.58 136.82 133.69
    总成本 1230.04 1190.15 432.90 429.63 958.85 942.96
    下载: 导出CSV

    表  2  微电网各能量占比

    Table  2.   Energy proportion in microgrid %

    季节电能热能总能量利用率
    冬季71.9728.0389.43
    夏季76.1323.8791.16
    过渡季63.8736.1393.13
    下载: 导出CSV

    表  3  不同场景下的调度成本

    Table  3.   Scheduling cost in different scenarios

    场景运维成本燃料成本污染气体
    治理成本
    总成本
    1235.58214.8158.53508.92
    2198.76200.4756.14455.37
    3229.61160.3344.83434.37
    4221.54164.5143.58429.63
    下载: 导出CSV

    表  4  优化调度的计算时间

    Table  4.   Calculation time for optimal scheduling s

    计算时间冬季典型日夏季典型日过渡季典型日
    调度 5.59 6.37 6.15
    优化 87.76 85.56 86.92
    总时间 93.36 91.93 93.08
    下载: 导出CSV

    表  5  不同权重系数下的优化成本

    Table  5.   Optimal cost under different weight coefficients

    季节组编号λ1λ2λ3λ4λ5λ6λ7运维成本/元燃料成本/元污染气体治理成本/元总成本/元
    冬季10.30.50.10.210.20.30.1435.00597.28157.871190.15
    20.20.20.20.20.20.20.2438.33602.02158.661199.00
    30.40.30.20.10.30.20.3439.09595.60157.641192.33
    40.50.40.30.20.40.50.2438.73597.92158.091194.74
    50.30.30.10.210.20.20.2438.94597.63157.961194.53
    夏季10.30.50.10.210.20.30.1221.54164.5143.58429.63
    20.20.20.20.20.20.20.2222.67165.1844.28432.12
    30.40.30.20.10.30.20.3222.31165.3644.25431.92
    40.50.40.30.20.40.50.2222.43165.2644.24431.94
    50.30.30.10.210.20.20.2222.77164.9944.45432.21
    过渡季10.30.50.10.210.20.30.1312.65496.62133.69942.96
    20.20.20.20.20.20.20.2314.01496.54134.21944.76
    30.40.30.20.10.30.20.3313.56496.02134.02943.59
    40.50.40.30.20.40.50.2313.69496.16134.07943.91
    50.30.30.10.210.20.20.2313.58496.77134.22944.57
    下载: 导出CSV
  • [1] ZHU D F, YANG B, LIU Q, et al. Energy trading in microgrids for synergies among electricity, hydrogen and heat networks[J]. Applied Energy, 2020, 272: 115225. doi: 10.1016/j.apenergy.2020.115225
    [2] 李奇,蒲雨辰,韩莹,等. 电-氢孤岛直流微电网的分层能量管理[J]. 西南交通大学学报,2020,55(5): 912-919.

    LI Qi, PU Yuchen, HAN Ying, et al. Hierarchical energy management of electricity-hydrogen island DC microgrid[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 912-919.
    [3] 李奇,赵淑丹,蒲雨辰,等. 考虑电氢耦合的混合储能微电网容量配置优化[J]. 电工技术学报,2021,36(3): 486-495.

    LIQi, ZHAO Shudan, PU Yuchen, et al. Capacity optimization of hybrid energy storage microgrid considering electricity-hydrogen coupling[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 486-495.
    [4] NADERIPOUR A, ABDUL-MALEK Z, NOWDEH S A, et al. Optimal allocation for combined heat and power system with respect to maximum allowable capacity for reduced losses and improved voltage profile and reliability of microgrids considering loading condition[J]. Energy, 2020, 196: 117124.1-117124.13.
    [5] 王丹,黄德裕,胡庆娥,等. 基于电-热联合市场出清的综合需求响应建模及策略[J]. 电力系统自动化,2020,44(12): 13-21. doi: 10.7500/AEPS20191220007

    WANG Dan, HUANG Deyu, HU Qing ’e, et al. Modeling and strategy of integrated demand response based on joint electricity-heat clearing market[J]. Automation of Electric Power Systems, 2020, 44(12): 13-21. doi: 10.7500/AEPS20191220007
    [6] 杨冬锋,姜超,蔡国伟,等. 考虑电热耦合的交直流微电网多目标优化配置[J]. 电力系统自动化,2020,44(8): 124-132.

    YANG Dongfeng, JIANG Chao, CAI Guowei, et al. Multi-objective optimization configuration of AC/DC microgrid considering electro-thermal coupling[J]. Automation of Electric Power Systems, 2020, 44(8): 124-132.
    [7] BORNAPOUR M, HOOSHMAND R A, KHODABAKHSHIAN A, et al. Optimal stochastic coordinated scheduling of proton exchange membrane fuel cell-combined heat and power, wind and photovoltaic units in micro grids considering hydrogen storage[J]. Applied Energy, 2017, 202: 308-322. doi: 10.1016/j.apenergy.2017.05.133
    [8] 王丹,智云强,贾宏杰,等. 基于多能源站协调的区域电力-热力系统日前经济调度[J]. 电力系统自动化,2018,42(13): 59-67. doi: 10.7500/AEPS20171129003

    WANG Dan, ZHI Yunqiang, JIA Hongjie, et al. Day-ahead economic dispatch strategy of regional electricity-heating integrated energy system based on multiple energy stations[J]. Automation of Electric Power Systems, 2018, 42(13): 59-67. doi: 10.7500/AEPS20171129003
    [9] 靳小龙,穆云飞,贾宏杰,等. 集成智能楼宇的微网系统多时间尺度模型预测调度方法[J]. 电力系统自动化,2019,43(16): 25-33. doi: 10.7500/AEPS20180629016

    JIN Xiaolong, MU Yunfei, JIA Hongjie, et al. Model predictive control based multiple-time-scheduling method for microgrid system with smart buildings integrated[J]. Automation of Electric Power Systems, 2019, 43(16): 25-33. doi: 10.7500/AEPS20180629016
    [10] JIN X L, WU J Z, MU Y F, et al. Hierarchical microgrid energy management in an office building[J]. Applied Energy, 2017, 208: 480-494. doi: 10.1016/j.apenergy.2017.10.002
    [11] AGHAEI J, ALIZADEH M I. Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)[J]. Energy, 2013, 55: 1044-1054. doi: 10.1016/j.energy.2013.04.048
    [12] GUO X G, BAO Z J, LAI H J, et al. Model predictive control considering scenario optimisation for microgrid dispatching with wind power and electric vehicle[J]. The Journal of Engineering, 2017, 2017(13): 2539-2543. doi: 10.1049/joe.2017.0785
    [13] YANG H M, PAN H, LUO F J, et al. Operational planning of electric vehicles for balancing wind power and load fluctuations in a microgrid[J]. IEEE Transactions on Sustainable Energy, 2017, 8(2): 592-604. doi: 10.1109/TSTE.2016.2613941
    [14] 吴鸣,骆钊,季宇,等. 基于模型预测控制的冷热电联供型微网动态优化调度[J]. 中国电机工程学报,2017,37(24): 7174-7184.

    WU Ming, LUO Zhao, JI Yu, et al. Model predictive control based dynamic optimal scheduling for cooling, heating and power microgrid[J]. Proceedings of the CSEE, 2017, 37(24): 7174-7184.
    [15] GU W, WANG Z H, WU Z, et al. An online optimal dispatch schedule for CCHP microgrids based on model predictive control[J]. 2017 IEEE Power & Energy Society General Meeting, 2017, 8(5): 2332-2342.
    [16] 陈维荣,于瑾,李奇,等. 电-氢多能互补型微电网的VSG平衡电流控制方法[J]. 西南交通大学学报,2019,54(6): 1323-1331. doi: 10.3969/j.issn.0258-2724.20180860

    CHEN Weirong, YU Jin, LI Qi, et al. Balanced current control method for virtual synchronous generator in electro-hydrogen multi-energy complementary microgrid[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1323-1331. doi: 10.3969/j.issn.0258-2724.20180860
    [17] 孔令国,蔡国伟,李龙飞,等. 风光氢综合能源系统在线能量调控策略与实验平台搭建[J]. 电工技术学报,2018,33(14): 3371-3384. doi: 10.19595/j.cnki.1000-6753.tces.170597

    KONG Lingguo, CAI Guowei, LI Longfei, et al. Online energy control strategy and experimental platform of integrated energy system of wind, photovoltaic and hydrogen[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3371-3384. doi: 10.19595/j.cnki.1000-6753.tces.170597
    [18] 蒲雨辰,李奇,陈维荣,等. 计及最小使用成本及储能状态平衡的电-氢混合储能孤岛直流微电网能量管理[J]. 电网技术,2019,43(3): 918-927. doi: 10.13335/j.1000-3673.pst.2018.1528

    PU Yuchen, LI Qi, CHEN Weirong, et al. Energy management for islanded DC microgrid with hybrid electric-hydrogen energy storage system based on minimum utilization cost and energy storage state balance[J]. Power System Technology, 2019, 43(3): 918-927. doi: 10.13335/j.1000-3673.pst.2018.1528
    [19] LI J R, LIN J, SONG Y H, et al. Operation optimization of power to hydrogen and heat (P2HH) in ADN coordinated with the district heating network[J]. IEEE Transactions on Sustainable Energy, 2019, 10(4): 1672-1683. doi: 10.1109/TSTE.2018.2868827
    [20] PASHAEI-DIDANI H, NOJAVAN S, NOUROLLAHI R, et al. Optimal economic-emission performance of fuel cell/CHP/storage based microgrid[J]. International Journal of Hydrogen Energy, 2019, 44(13): 6896-6908. doi: 10.1016/j.ijhydene.2019.01.201
    [21] 随权,马啸,魏繁荣,等. 计及燃料电池热-电综合利用的能源网日前调度优化策略[J]. 中国电机工程学报,2019,39(6): 1603-1613, 1857.

    SUI Quan, MA Xiao, WEI Fanrong, et al. Day-ahead dispatching optimization strategy for energy network considering fuel cell thermal-electric comprehensive utilization[J]. Proceedings of the CSEE, 2019, 39(6): 1603-1613, 1857.
    [22] HU Q, LIN J, ZENG Q, et al. Optimal control of a hydrogen microgrid based on an experiment validated P2HH model[J]. IET Renewable Power Generation, 2020, 14(3): 364-371. doi: 10.1049/iet-rpg.2019.0544
    [23] 丁明,王波,赵波,等. 独立风光柴储微网系统容量优化配置[J]. 电网技术,2013,37(3): 575-581. doi: 10.13335/j.1000-3673.pst.2013.03.002

    DING Ming, WANG Bo, ZHAO Bo, et al. Configuration optimization of capacity of standalone PV-wind-diesel-battery hybrid microgrid[J]. Power System Technology, 2013, 37(3): 575-581. doi: 10.13335/j.1000-3673.pst.2013.03.002
    [24] 熊焰,吴杰康,王强,等. 风光气储互补发电的冷热电联供优化协调模型及求解方法[J]. 中国电机工程学报,2015,35(14): 3616-3625.

    XIONG Yan, WU Jiekang, WANG Qiang, et al. An optimization coordination model and solution for combined cooling, heating and electric power systems with complimentary generation of wind, PV, gas and energy storage[J]. Proceedings of the CSEE, 2015, 35(14): 3616-3625.
    [25] LI Q, CHEN W R, LIU Z X, et al. Development of energy management system based on a power sharing strategy for a fuel cell-battery-supercapacitor hybrid tramway[J]. Journal of Power Sources, 2015, 279: 267-280. doi: 10.1016/j.jpowsour.2014.12.042
    [26] ERGEN T, KOZAT S S. Online training of LSTM networks in distributed systems for variable length data sequences[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(10): 5159-5165. doi: 10.1109/TNNLS.2017.2770179
    [27] MA H W, ZHANG D Q. A grey forecasting model for coal production and consumption[C]//2009 IEEE International Conference on Grey Systems and Intelligent Services (GSIS 2009). Nanjing: IEEE, 2009: 512-516.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  708
  • HTML全文浏览量:  303
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-29
  • 修回日期:  2021-09-05
  • 网络出版日期:  2022-11-29
  • 刊出日期:  2021-10-28

目录

    /

    返回文章
    返回