• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

有轨电车嵌入式轨道路基荷载动应力特性分析

谢宏伟 罗强 蒋良潍 张良 王腾飞 刘钢

谢宏伟, 罗强, 蒋良潍, 张良, 王腾飞, 刘钢. 有轨电车嵌入式轨道路基荷载动应力特性分析[J]. 西南交通大学学报, 2023, 58(2): 479-488. doi: 10.3969/j.issn.0258-2724.20210303
引用本文: 谢宏伟, 罗强, 蒋良潍, 张良, 王腾飞, 刘钢. 有轨电车嵌入式轨道路基荷载动应力特性分析[J]. 西南交通大学学报, 2023, 58(2): 479-488. doi: 10.3969/j.issn.0258-2724.20210303
XIE Hongwei, LUO Qiang, JIANG Liangwei, ZHANG Liang, WANG Tengfei, LIU Gang. Analysis on Load Dynamic Stress Characteristics of Embedded Track Subgrade of Tram[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 479-488. doi: 10.3969/j.issn.0258-2724.20210303
Citation: XIE Hongwei, LUO Qiang, JIANG Liangwei, ZHANG Liang, WANG Tengfei, LIU Gang. Analysis on Load Dynamic Stress Characteristics of Embedded Track Subgrade of Tram[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 479-488. doi: 10.3969/j.issn.0258-2724.20210303

有轨电车嵌入式轨道路基荷载动应力特性分析

doi: 10.3969/j.issn.0258-2724.20210303
基金项目: 国家自然科学基金(52078435);四川省科技计划(2021YJ0001)
详细信息
    作者简介:

    谢宏伟(1991—),男,博士研究生,研究方向为路基动力学,E-mail:hongweixie@my.swjtu.edu.cn

    通讯作者:

    罗强(1963—),男,教授,研究方向为土力学与路基工程,E-mail:LQrock@swjtu.edu.cn

  • 中图分类号: U213.1

Analysis on Load Dynamic Stress Characteristics of Embedded Track Subgrade of Tram

  • 摘要:

    掌握有轨电车交通荷载下路基动力响应特性是设计嵌入式轨道路基结构的关键技术前提. 首先,考虑车体间铰接形式、轨道支承特点与路基阻尼影响,构建有轨电车-嵌入式轨道-土质路基耦合动力学模型;然后,以中国普通干线铁路轨道谱为激励,进行动力学仿真;最后,分析路基面承受车辆荷载特点,并讨论动应力放大系数的概率分布特征与沿深度衰减规律. 研究表明:嵌入式轨道结构路基面动应力的幅值受轨道随机不平顺影响服从正态分布规律;在有轨电车轴重11 t、设计速度100 km/h、90%干线轨道谱条件下,路基面动应力放大系数服从正态分布N(1.008, 0.1002),超越概率30%的常遇动力系数为1.058,保证率为99.9%的极限动力系数为1.308;受路基材料阻尼影响,动应力放大系数沿深度线性衰减,阻尼增大,衰减趋势加剧;随着深度增加,动应力放大系数均值逐渐减小,由动力作用增大区略大于1过渡到动力作用减弱区小于1.

     

  • 图 1  有轨电车-嵌入式轨道-土质路基动力学模型

    Figure 1.  Tram-embedded rail track-subgrade dynamic model

    图 2  嵌入式轨道

    Figure 2.  Embed rail track

    图 3  高低不平顺模拟结果

    Figure 3.  Vertical rail irregularity sample

    图 4  路基结构三维有限元模型(单位:m)

    Figure 4.  Subgrade 3D FE model (unit:m)

    图 5  路基面动应力时程曲线

    Figure 5.  Vertical dynamic stress on the top of subgrade

    图 6  路基面动应力时程曲线

    Figure 6.  Vertical dynamic stress on the top of subgrade

    图 7  路基面动力应力直方图与Q-Q图

    Figure 7.  Histogram and Q-Q plot of dynamic stress on subgrade surface

    图 8  速度对路基面动力应力影响

    Figure 8.  Influence of speed on subgrade dynamic stress

    图 9  路基动应力沿深度的分布

    Figure 9.  Subgrade dynamical stress distribution along depth

    图 10  φz沿深度衰减

    Figure 10.  Attenuation of φz along depth

    表  1  有轨电车模型参数

    Table  1.   Parameters of modern tram

    类别参数数值
    几何l1l5/m3.728
    l2l4/m3.282
    l3/m2.289
    lco/m1.436
    hu/m2.0
    hd/m1.5
    lt/m0.8
    R/m0.31
    质量/惯量m1m5/kg11106
    m2m4/kg11979
    m3/kg7691
    mt1mt3/kg2231
    mt2/kg1291
    mw/kg933
    J1J5/(kg·m235773
    J2J4/(kg·m242097
    J3/(kg·m213530
    Jt1Jt3/(kg·m2500
    Jt2/(kg·m2230
    连接件Kux1Kux2Kux4/(N·m−15 × 108
    Kux3/(N·m−11 × 105
    Kdxi/(N·m−15 × 108
    Kdzi/(N·m−15 × 108
    Ksz/(N·m−12 × 106
    Kpz/(N·m−14 × 106
    Cux1Cux2Cux4/(N·s·m−13000
    Cux3/(N·s·m−13000
    Cdxi/(N·s·m−13000
    Cdzi/(N·s·m−13000
    Csz/(N·s·m−16 × 104
    Cpz/(N·s·m−11.872 × 104
    下载: 导出CSV

    表  2  线路结构参数

    Table  2.   Parameters of track

    层位参数数值
    60R2 钢轨mr/(kg·m−159.75
    ErIr/(N·m26.93 × 106
    弹性垫板kp/(N·m−1·m−11.10 × 107
    cp/(N·s·m−1·m−16.12 × 104
    叠合梁mb/(kg·m−13316
    EbIb/( N·m23.43 × 106
    路基kf/( N·m−1·m−11.13 × 108
    cf/( N·s·m−1·m−16.00 × 104
    下载: 导出CSV

    表  3  轨道谱高低不平顺特征参数

    Table  3.   Vertical parameters of CR track spectrum

    轨道 A1 A2 A3 A4 A5 A6 A7
    左轨 1.1029 −1.4709 0.5941 0.8480 3.8016 −0.2500 0.0112
    右轨 0.8581 −1.4607 0.5848 0.0407 2.8428 −0.1989 0.0094
    下载: 导出CSV

    表  4  路基材料参数

    Table  4.   Material Parameters of Subgrade

    结构
    层位
    密度/
    (kg·m−3
    弹性模量/
    MPa
    泊松比阻尼比自振
    频率/Hz
    碎石类20001400.300.0429.8
    砾石类19001200.300.0424.2
    黏土1890400.350.0420.4
    下载: 导出CSV

    表  5  φ0的K-S检验

    Table  5.   K-S test for φ0

    样本数量统计量 DP结论(α=5%)
    16590.0190.583服从正态分布(P > α
    下载: 导出CSV

    表  6  φ0特征值

    Table  6.   Characteristic value of φ0

    均值 μ标准差 σ$\varphi _0^{\rm{f}}$$\varphi _0^{\rm{l}}$
    1.0080.1001.0581.308
    下载: 导出CSV

    表  7  动应力放大系数φz沿深度衰减方程

    Table  7.   Attenuation equations of φz in depth

    $ \zeta $${\bar \varphi _{\textit{z}}}$$\varphi _{\textit{z}}^{\rm{f}}$$\varphi _{\textit{z}}^{\rm{l}}$
    0.041.018−0.0258z1.069−0.0258z1.324−0.0257z
    0.081.017−0.0260z1.068−0.0263z1.322−0.0279z
    0.121.016−0.0262z1.067−0.0269z1.320−0.0300z
    0.151.015−0.0265z1.066−0.0273z1.319−0.0315z
    下载: 导出CSV
  • [1] LING L, HAN J, XIAO X, et al. Dynamic behavior of an embedded rail track coupled with a tram vehicle[J]. Journal of Vibration and Control, 2017, 23(14): 2355-2372. doi: 10.1177/1077546315616521
    [2] ESVELD C, ESVELD C. Modern railway track[M]. [S.l.]: MRT-productions Zaltbommel, 2001: 385.
    [3] WANG L, WANG P, CHEN R, et al. Experimental and numerical investigation of damage development in embedded rail system under longitudinal force[J]. Engineering Failure Analysis, 2020, 114: 104590.1-104590.16.
    [4] 冯建龙. 100%低地板车辆通过钢轨焊缝区轮轨垂向动力作用分析[D]. 成都: 西南交通大学, 2016.
    [5] GUO Y, ZHAI W, SUN Y, et al. Mechanical characteristics of modern tramcar-embedded track system due to differential subgrade settlement[J]. Australian Journal of Structural Engineering, 2017, 18(3): 178-189. doi: 10.1080/13287982.2017.1363990
    [6] SHAN Y, WANG B, ZHOU S, et al. Dynamic analysis of tram vehicles coupled with the track system based on staggered iterative algorithm[J]. Journal of Computational and Nonlinear Dynamics, 2020, 15(6): 061002.1-061002.13.
    [7] REAL J, MARTÍNEZ P, MONTALBÁN L, et al. Modelling vibrations caused by tram movement on slab track line[J]. Mathematical and Computer Modelling, 2011, 54(1): 280-291.
    [8] KOUROUSSIS G, PAUWELS N, BRUX P, et al. A numerical analysis of the influence of tram characteristics and rail profile on railway traffic ground-borne noise and vibration in the brussels region[J]. Science of The Total Environment, 2014, 482/483: 452-460. doi: 10.1016/j.scitotenv.2013.05.083
    [9] 邓永权. 有轨电车列车—嵌入式轨道动态相互作用研究[D]. 成都: 西南交通大学, 2014.
    [10] SHAMALTA M, METRIKINE A V. Analytical study of the dynamic response of an embedded railway track to a moving load[J]. Archive of Applied Mechanics, 2003, 73(1): 131-146.
    [11] SUN W, THOMPSON D, TOWARD M, et al. Modelling of vibration and noise behaviour of embedded tram tracks using a wavenumber domain method[J]. Journal of Sound and Vibration, 2020, 481: 115446.1-115446.18.
    [12] 冯青松,孙魁,雷晓燕,等. 有轨电车嵌入式轨道路基结构动应力分布规律[J]. 铁道科学与工程学报,2019,16(4): 885-891.

    FENG Qingsong, SUN Kui, LEI Xiaoyan, et al. Study on dynamic stress distribution law of embedded track subgrade of tram[J]. Journal of Railway Science and Engineering, 2019, 16(4): 885-891.
    [13] 何雨. 有轨电车路基荷载特征与结构设计[D]. 成都: 西南交通大学, 2016.
    [14] 邵康,苏谦,黄俊杰,等. 现代有轨电车路基沉降与动应力测试研究[J]. 铁道标准设计,2017,61(8): 47-50.

    SHAO Kang, SU Qian, HUANG Junjie, et al. Study on subgrade settlement and dynamic test of modern tram[J]. Railway Standard Design, 2017, 61(8): 47-50.
    [15] 刘钢,罗强,张良,等. 列车荷载作用下无砟轨道路基动应力特性分析[J]. 铁道学报,2013,35(9): 86-93. doi: 10.3969/j.issn.1001-8360.2013.09.014

    LIU Gang, LUO Qiang, ZHANG Liang, et al. Analysis on the dynamic stress characteristics of the unballsted track subgrade under train loading[J]. Journal of the China Railway Society, 2013, 35(9): 86-93. doi: 10.3969/j.issn.1001-8360.2013.09.014
    [16] 黄晶,罗强,李佳,等. 车辆轴载作用下无砟轨道路基面动应力分布规律探讨[J]. 铁道学报,2010,32(2): 60-65.

    HUANG Jing, LUO Qiang, LI Jia, et al. Analysis on distribution of dynamic stresses of ballastless track subgrade surface under axle loading of vehicle[J]. Journal of the China Railway Society, 2010, 32(2): 60-65.
    [17] 叶阳升,蔡德钩,魏少伟,等. 高速铁路无砟轨道路基动应力分布特征及解析算法[J]. 中国铁道科学,2020,41(6): 1-9. doi: 10.3969/j.issn.1001-4632.2020.06.01

    YE Yangsheng, CAI Degou, WEI Shaowei, et al. Dynamic stress distribution characteristics and analytical algorithm of ballastless track foundation of high-speed railway[J]. China Railway Science, 2020, 41(6): 1-9. doi: 10.3969/j.issn.1001-4632.2020.06.01
    [18] 范生波. 高速铁路无砟轨道路基动响应测试分析[D]. 成都: 西南交通大学, 2010.
    [19] 陈虎. 高速铁路无砟轨道路堤地基差异沉降传递规律及过渡段动力学试验研究[D]. 成都: 西南交通大学, 2013.
    [20] 康熊,刘秀波,李红艳,等. 高速铁路无砟轨道不平顺谱[J]. 中国科学:技术科学,2014,44(7): 687-696. doi: 10.1360/N092014-00088

    KANG X, LIU X B, LI H Y, et al. PSD of ballastless track irregularities of high-speed railway[J]. SCIENTIA SINICA Technology, 2014, 44(7): 687-696. doi: 10.1360/N092014-00088
    [21] HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667-692. doi: 10.1061/JSFEAQ.0001760
    [22] LIU J, DU Y, DU X, et al. 3D viscous-spring artificial boundary in time domain[J]. Earthquake Engineering and Engineering Vibration, 2006, 5(1): 93-102. doi: 10.1007/s11803-006-0585-2
    [23] RIX G J, LAI C G, SPANG JR A W. In situ measurement of damping ratio using surface waves[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(5): 472-480. doi: 10.1061/(ASCE)1090-0241(2000)126:5(472)
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  381
  • HTML全文浏览量:  104
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-05
  • 修回日期:  2021-08-26
  • 网络出版日期:  2022-12-10
  • 刊出日期:  2022-07-13

目录

    /

    返回文章
    返回