• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

公铁平层桥梁桥塔遮风效应风洞试验研究

何佳骏 向活跃 朱金 张博韬 李永乐

何佳骏, 向活跃, 朱金, 张博韬, 李永乐. 公铁平层桥梁桥塔遮风效应风洞试验研究[J]. 西南交通大学学报, 2023, 58(2): 388-397. doi: 10.3969/j.issn.0258-2724.20210286
引用本文: 何佳骏, 向活跃, 朱金, 张博韬, 李永乐. 公铁平层桥梁桥塔遮风效应风洞试验研究[J]. 西南交通大学学报, 2023, 58(2): 388-397. doi: 10.3969/j.issn.0258-2724.20210286
HE Jiajun, XIANG Huoyue, ZHU Jin, ZHANG Botao, LI Yongle. Experimental Study on Shelter Effect of Bridge Tower on Single-Level Rail-Cum-Road Bridge[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 388-397. doi: 10.3969/j.issn.0258-2724.20210286
Citation: HE Jiajun, XIANG Huoyue, ZHU Jin, ZHANG Botao, LI Yongle. Experimental Study on Shelter Effect of Bridge Tower on Single-Level Rail-Cum-Road Bridge[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 388-397. doi: 10.3969/j.issn.0258-2724.20210286

公铁平层桥梁桥塔遮风效应风洞试验研究

doi: 10.3969/j.issn.0258-2724.20210286
基金项目: 国家自然科学基金(51778544,51978589,52008396)
详细信息
    作者简介:

    何佳骏(1994—),男,博士研究生,研究方向为车桥耦合振动效应,E-mail:1016396401@qq.com

    通讯作者:

    向活跃(1986—),男,副教授,博导,研究方向为车桥耦合振动效应,E-mail: hy@swjtu.edu.cn

  • 中图分类号: U447

Experimental Study on Shelter Effect of Bridge Tower on Single-Level Rail-Cum-Road Bridge

  • 摘要:

    车辆经过桥塔区域时,由于桥塔的遮风效应,其气动荷载会产生突变,且公铁平层桥梁的桥塔由于纵向尺度较大,车辆经过桥塔区域时气动荷载的变化更加剧烈. 为明确某公铁平层桥梁上车辆在桥塔区域的气动特性,制作了1/20大比例尺的风洞试验模型;基于优化后的测试系统,测试了车辆通过公铁平层宽幅桥梁桥塔时的气动荷载,研究了车道位置、车辆类型以及桥塔外形对通过桥塔车辆的气动特性的影响. 结果表明:越靠近桥塔车道上的车辆,经过桥塔时的横向力系数、摇头力矩系数的突变量更大,正向升力也越大,因而更容易发生侧滑与侧偏;车长对车辆通过桥塔区域的性能有显著影响,长度较小的车辆具有更大的横向力系数突变量,长度较长的车辆具有更大的倾覆力矩系数、摇头力矩系数及点头力矩系数突变量;与矩形截面桥塔相比,带倒角的桥塔使得厢式货车的横向力突变量减小了43.7%,使集装箱车的横向力系数突变量减小了25.8%,且使集装箱车的摇头力矩系数突变量减小了29.2%.

     

  • 图 1  宜宾临港桥主梁截面

    Figure 1.  Main beam section of the Yibin Lingang Yangtze River Bridge

    图 2  节段模型桥面系

    Figure 2.  Deck system of the section model

    图 3  桥塔截面

    Figure 3.  Section of the bridge tower

    图 4  汽车模型尺寸

    Figure 4.  Dimensions of road vehicle model

    图 5  试验中的模型

    Figure 5.  Test model in the experiment

    图 6  工况布置

    Figure 6.  Test arragement

    图 7  汽车五分力示意

    Figure 7.  Five-component force of the vehicle

    图 8  厢式货车过矩形截面桥塔时的气动力系数

    Figure 8.  Aerodynamic force coefficients of the van when passing the bridge tower with rectangular section

    图 9  车辆类型对气动力系数的影响

    Figure 9.  Influence of the vehicle type on aerodynamic force coefficients

    图 10  桥塔类型对横向力系数的影响

    Figure 10.  Influence of tower type on transverse force coefficient

    图 11  桥塔类型对升力系数的影响

    Figure 11.  Influence of tower type on lift force coefficient of the van

    图 12  桥塔类型对摇头力矩系数的影响

    Figure 12.  Influence of tower section type on yawing moment coefficient

    图 13  桥塔类型对点头力矩系数的影响

    Figure 13.  Influence of tower type on pitching moment coefficient of the van

    表  1  天平参数

    Table  1.   Parameters of the force mearing balance

    参数名称取值
    力量程/N±50
    力矩量程/(N·m)±2
    力精度/%0.5
    力矩精度/%0.5
    最大采样频率/kHz1
    下载: 导出CSV
  • [1] 黄林,廖海黎. 横向风作用下高速铁路车桥系统绕流特性分析[J]. 西南交通大学学报,2005,40(5): 585-590. doi: 10.3969/j.issn.0258-2724.2005.05.004

    HUANG Lin, LIAO Haili. Analysis of flow characteristics around high-speed railway bridge-vehicle system under cross wind[J]. Journal of Southwest Jiaotong University, 2005, 40(5): 585-590. doi: 10.3969/j.issn.0258-2724.2005.05.004
    [2] 葛玉梅,李永乐,何向东. 作用在车桥系统上风荷载的风洞试验研究[J]. 西南交通大学学报,2001,36(6): 612-616. doi: 10.3969/j.issn.0258-2724.2001.06.014

    GE Yumei, LI Yongle, HE Xiangdong. Study on wind-induced loads of train-bridge system by wind tunnel test[J]. Journal of Southwest Jiaotong University, 2001, 36(6): 612-616. doi: 10.3969/j.issn.0258-2724.2001.06.014
    [3] BAKER C. J. The effect of high winds on vehicle behavior[C]//Proceeding of the International Symposium on Advances in Bridge Aerodynamics, Copenhagen: [s.n.], 1998: 278-282.
    [4] ZHOU Q, ZHU L D. Numerical and experimental study on wind environment at near tower region of a bridge deck[J]. Heliyon, 2020, 6(5): 1-9.
    [5] 陈晓冬. 大跨桥梁侧风行车安全分析[D]. 上海: 同济大学, 2007.
    [6] 冯晴. 侧风下桥墩及桥塔附近桥面风环境数值模拟研究[D]. 成都: 西南交通大学, 2015.
    [7] 魏恩来. 桥塔及风屏障对桥面风环境和行车安全性的影响研究[D]. 成都: 西南交通大学, 2016.
    [8] CHARUVISIT S, KIMURA K, FUJINO Y. Effects of wind barrier on a vehicle passing in the wake of a bridge tower in cross wind and its response[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(7/8): 609-639.
    [9] CHARUVISIT S, KIMURA K, FUJINO Y. Experimental and semi-analytical studies on the aerodynamic forces acting on a vehicle passing through the wake of a bridge tower in cross wind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(9): 749-780. doi: 10.1016/j.jweia.2004.04.001
    [10] WANG Y P, ZHANG Z Y, ZHANG Q W, et al. Dynamic coupling analysis of the aerodynamic performance of a Sedan passing by the bridge pylon in a crosswind[J]. Applied Mathematical Modelling, 2021, 89: 1279-1293. doi: 10.1016/j.apm.2020.07.003
    [11] ARGENTINI T, OZKAN E, ROCCHI D, et al. Cross-wind effects on a vehicle crossing the wake of a bridge pylon[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(6/7): 734-740.
    [12] ROCCHI D, ROSA L, SABBIONI E, et al. A numerical-experimental methodology for simulating the aerodynamic forces acting on a moving vehicle passing through the wake of a bridge tower under cross wind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104/105/106: 256-265.
    [13] WANG B, XU Y L, ZHU L D, et al. Crosswind effect studies on road vehicle passing by bridge tower using computational fluid dynamics[J]. Engineering Applications of Computational Fluid Mechanics, 2014, 8(3): 330-344. doi: 10.1080/19942060.2014.11015519
    [14] SALATI L, SCHITO P, ROCCHI D, et al. Aerodynamic study on a heavy truck passing by a bridge pylon under crosswinds using CFD[J]. Journal of Bridge Engineering, 2018, 23(9): 04018065.1-04018065.14.
    [15] 李磊,朱乐东,徐幼麟. 厢式货车在桥塔区域的气动力特征研究[J]. 山西建筑,2009,35(33): 312-314.

    LI Lei, ZHU Ledong, XU Youlin. Study on the aerodynamic characteristic of van nearby bridge tower region[J]. Shanxi Architecture, 2009, 35(33): 312-314.
    [16] 马学庆. 桥塔区域车桥系统气动性能数值模拟及行车安全性分析[D]. 长沙: 中南大学, 2012.
    [17] 王达磊,陈艾荣,马如进. 风障对桥塔附近桥面汽车气动力特性的影响[J]. 工程力学,2013,30(10): 244-250. doi: 10.6052/j.issn.1000-4750.2012.10.0784

    WANG Dalei, CHEN Airong, MA Rujin. Influence of wind barrier on aerodynamic characteristics of automobiles on bridge girder near pylon[J]. Engineering Mechanics, 2013, 30(10): 244-250. doi: 10.6052/j.issn.1000-4750.2012.10.0784
    [18] 周记国,胡兆同,薛晓锋,等. 侧向风作用下车辆荷载突变效应的CFD模拟研究[J]. 公路交通科技,2015,32(1): 145-152. doi: 10.3969/j.issn.1002-0268.2015.01.024

    ZHOU Jiguo, HU Zhaotong, XUE Xiaofeng, et al. Simulation of effect of sudden change of vehicle loads under cross wind by CFD method[J]. Journal of Highway and Transportation Research and Development, 2015, 32(1): 145-152. doi: 10.3969/j.issn.1002-0268.2015.01.024
    [19] XIANG H Y, LI Y L, CHEN S R, et al. A wind tunnel test method on aerodynamic characteristics of moving vehicles under crosswinds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 163: 15-23. doi: 10.1016/j.jweia.2017.01.013
    [20] WANG Y L, SAUL R. Wide cable-supported bridges for rail-cum-road traffic[J]. Structural Engineering International, 2020, 30(4): 551-559. doi: 10.1080/10168664.2020.1735980
    [21] BAKER C J, REYNOLDS S. Wind-induced accidents of road vehicles[J]. Accident Analysis & Prevention, 1992, 24(6): 559-575.
    [22] 张景钰,张明金,李永乐,等. 高速铁路路堤-路堑过渡段复杂风场和列车气动效应风洞试验研究[J]. 工程力学,2019,36(1): 80-87. doi: 10.6052/j.issn.1000-4750.2017.09.0749

    ZHANG Jingyu, ZHANG Mingjin, LI Yongle, et al. Wind tunnel test study on complex wind field and vehicle aerodynamic effects in embankment-cutting transition zone in high-speed railway[J]. Engineering Mechanics, 2019, 36(1): 80-87. doi: 10.6052/j.issn.1000-4750.2017.09.0749
    [23] CHEN N, LI Y L, WANG B, et al. Effects of wind barrier on the safety of vehicles driven on bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 143: 113-127. doi: 10.1016/j.jweia.2015.04.021
    [24] 张田,郭薇薇,夏禾. 侧向风作用下车桥系统气动性能及风屏障的影响研究[J]. 铁道学报,2013,35(7): 102-106. doi: 10.3969/j.issn.1001-8360.2013.07.017

    ZHANG Tian, GUO Weiwei, XIA He. Aerodynamic characteristics of vehicle-bridge system under crosswinds and effect of wind barriers[J]. Journal of the China Railway Society, 2013, 35(7): 102-106. doi: 10.3969/j.issn.1001-8360.2013.07.017
    [25] DORIGATTI F, STERLING M, ROCCHI D, et al. Wind tunnel measurements of crosswind loads on high sided vehicles over long span bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 107/108: 214-224. doi: 10.1016/j.jweia.2012.04.017
    [26] ZHU L D, LI L, XU Y L, et al. Wind tunnel investigations of aerodynamic coefficients of road vehicles on bridge deck[J]. Journal of Fluids and Structures, 2012, 30: 35-50. doi: 10.1016/j.jfluidstructs.2011.09.002
    [27] CARASSALE L, FREDA A, MARRÈ-BRUNENGHI M. Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners[J]. Journal of Fluids and Structures, 2014, 44: 195-204. doi: 10.1016/j.jfluidstructs.2013.10.010
    [28] CAO Y, TAMURA T. Aerodynamic characteristics of a rounded-corner square cylinder in shear flow at subcritical and supercritical Reynolds numbers[J]. Journal of Fluids and Structures, 2018, 82: 473-491. doi: 10.1016/j.jfluidstructs.2018.07.012
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  369
  • HTML全文浏览量:  132
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-16
  • 修回日期:  2021-07-12
  • 网络出版日期:  2022-11-09
  • 刊出日期:  2021-07-19

目录

    /

    返回文章
    返回