• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于PIV试验的积雪平屋面风场特性研究

郑云 刘志祥 余志祥 傅彦青

郑云, 刘志祥, 余志祥, 傅彦青. 基于PIV试验的积雪平屋面风场特性研究[J]. 西南交通大学学报, 2023, 58(2): 430-437, 461. doi: 10.3969/j.issn.0258-2724.20210262
引用本文: 郑云, 刘志祥, 余志祥, 傅彦青. 基于PIV试验的积雪平屋面风场特性研究[J]. 西南交通大学学报, 2023, 58(2): 430-437, 461. doi: 10.3969/j.issn.0258-2724.20210262
ZHENG Yun, LIU Zhixiang, YU Zhixiang, FU Yanqing. Wind Field Characteristics of Snow-Covered Low-Rise Building Roof Based on PIV Experiments[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 430-437, 461. doi: 10.3969/j.issn.0258-2724.20210262
Citation: ZHENG Yun, LIU Zhixiang, YU Zhixiang, FU Yanqing. Wind Field Characteristics of Snow-Covered Low-Rise Building Roof Based on PIV Experiments[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 430-437, 461. doi: 10.3969/j.issn.0258-2724.20210262

基于PIV试验的积雪平屋面风场特性研究

doi: 10.3969/j.issn.0258-2724.20210262
基金项目: 国家钢结构工程技术研究中心开放基金(YZB2019Ky03);中国国家铁路集团有限公司科技研究开发计划(N2020T004);国家重点研发计划(2016YFC0802205-1);国家自然科学基金(51378428)
详细信息
    作者简介:

    郑云(1976—),男,教授级高工,研究方向为钢结构、结构诊治,E-mail:nrcsc@139.com

    通讯作者:

    余志祥(1976—),男,教授,博导,研究方向为结构风雪荷载,防护结构,E-mail:yzxzrq@home.swjtu.edu.cn

  • 中图分类号: TU208.2;TU312

Wind Field Characteristics of Snow-Covered Low-Rise Building Roof Based on PIV Experiments

  • 摘要:

    为研究屋盖积雪对低矮平屋面风场特性的干扰影响,基于风吹雪风洞试验,通过3D打印获得平屋面的3D积雪形态,并以无积雪模型作为对照,系统地开展了PIV (particle image velocimetry)风洞试验,并结合LES (large eddy simulation)方法,研究了6组平屋面建筑有无积雪时的流场分布特性. 试验研究表明:当无积雪时,来流在屋面前缘处分离后能形成典型的分离泡流动,分离泡内速度场存在明显逆流现象;当有积雪时,屋面上方的逆流减弱甚至消失,积雪显著地加快了流经屋面附近流场的速度,其最大速度增量约为0.6,同时,流线分布更贴合模型壁面,速度梯度增大,也相对增大了涡量值;积雪会使得屋面上方整体的时均湍动能和切应力均减小,但对屋面迎风区域的平均和脉动风压均有增大作用,其增大比值约为15%和20%. 通过该研究可进一步对低矮建筑的风雪荷载作用机理展开分析,为屋盖结构的抗风雪设计提供参考.

     

  • 图 1  典型模型概况

    Figure 1.  Sketch view of typical model

    图 2  来流风速和湍流度剖面

    Figure 2.  Wind velocity and turbulent intensity of oncoming flow

    图 3  PIV风洞试验

    Figure 3.  PIV experiments in wind tunnel

    图 4  模型 2有/无积雪情况的时均速度分布

    Figure 4.  Distributions of the mean streamwise and vertical velocities for model 2 with and without snowdrifts

    图 5  有/无积雪时屋面特定路径上的速度对比

    Figure 5.  Comparison of streamwise velocities atthe specific route for all cases

    图 6  模型 1~4屋面时均流线分布

    Figure 6.  Time-averaged streamlines for models 1–4

    图 7  模型 1~4屋面上方涡量场分布

    Figure 7.  Distributions of time-averaged vortices for models 1–4

    图 8  各工况下有/无积雪屋面涡量值对比

    Figure 8.  Comparison of vortices for all cases

    图 9  计算域及网格

    Figure 9.  Computational domain and mesh

    图 10  LES与PIV速度对比

    Figure 10.  Comparison of velocity between PIV and LES

    图 11  有无积雪时湍动能和湍流应力分布对比

    Figure 11.  Comparison in distributions of turbulent kinetic energy (k) and turbulent shear stresses (${u}_1{w}_1$)with and without snowdrifts

    图 12  模型中轴线风压系数分布

    Figure 12.  Wind pressure coefficient along the model axis

    表  1  PIV试验工况

    Table  1.   PIV experiment cases

    模型编号L/HW/H有无积雪
    模型 11.02.0有/无
    模型 22.02.0有/无
    模型 33.02.0有/无
    模型 44.02.0有/无
    模型 52.01.0有/无
    模型 62.03.0有/无
    下载: 导出CSV

    表  2  边界条件和求解设置

    Table  2.   Boundary conditions and solution settings

    计算条件边界条件及求解设置
    入口速度入口,式(1)
    出口压力出口
    两侧和顶部对称边界
    建筑和地表无剪切壁面
    求解算法分裂算子的压力-隐式方法
    动量项离散有界中心差分
    时间步长/s0.000 2
    总物理时间/s10
    下载: 导出CSV

    表  3  涡核和再附长度对比

    Table  3.   Vortex position and reattachment length

    方法有无积雪xs/Hzs/HLs/H
    本文 PIV有/无0.580.191.35
    本文 LES有/无0.640.181.38
    0.410.100.75
    Kim等 [14] PIV0.600.191.01
    孙虎跃等[20] PIV0.700.191.52
    注:xs为涡核到分离点距离;zs为涡核到屋面高度;Ls为分离涡再附点到分离点距离.
    下载: 导出CSV
  • [1] TSUCHIYA M, TOMABECHI T, HONGO T, et al. Wind effects on snowdrift on stepped flat roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12/13/14/15): 1881-1892.
    [2] 赵雷,余志祥,齐欣,等. 低矮建筑屋盖风雪流作用场地实测与数值模拟[J]. 振动与冲击,2017,36(22): 225-231,244. doi: 10.13465/j.cnki.jvs.2017.22.035

    ZHAO Lei, YU Zhixiang, QI Xin, et al. Field measurements and numerical simulation of snowdrift on low-rise buildings[J]. Journal of Vibration and Shock, 2017, 36(22): 225-231,244. doi: 10.13465/j.cnki.jvs.2017.22.035
    [3] ZHOU X Y, KANG L Y, YUAN X M, et al. Wind tunnel test of snow redistribution on flat roofs[J]. Cold Regions Science and Technology, 2016, 127: 49-56. doi: 10.1016/j.coldregions.2016.04.006
    [4] LIU Z X, YU Z X, ZHU F, et al. An investigation of snow drifting on flat roofs: Wind tunnel tests and numerical simulations[J]. Cold Regions Science and Technology, 2019, 162: 74-87. doi: 10.1016/j.coldregions.2019.03.016
    [5] YU Z X, ZHU F, CAO R Z, et al. Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs[J]. Wind and Structures, 2019, 28(1): 31-47.
    [6] 余志祥,赵雷,赵世春,等. 基于CFD-DEM耦合的屋面积雪分布数值模拟[J]. 建筑结构学报,2017,38(10): 116-122.

    YU Zhixiang, ZHAO Lei, ZHAO Shichun, et al. Simulation of snow distribution on typical roofs using coupled CFD and DEM methods[J]. Journal of Building Structures, 2017, 38(10): 116-122.
    [7] ZHOU X Y, KANG L Y, GU M, et al. Numerical simulation and wind tunnel test for redistribution of snow on a flat roof[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 153: 92-105. doi: 10.1016/j.jweia.2016.03.008
    [8] ZHAO L, YU Z X, ZHU F, et al. CFD-DEM modeling of snowdrifts on stepped flat roofs[J]. Wind and Structures, 2016, 23(6): 523-542.
    [9] CASTRO I P, ROBINS A G. The flow around a surface-mounted cube in uniform and turbulent streams[J]. Journal of Fluid Mechanics, 1977, 79(2): 307-335. doi: 10.1017/S0022112077000172
    [10] BLOCKEN B, STATHOPOULOS T, VAN BEECK J P A J. Pedestrian-level wind conditions around buildings: Review of wind-tunnel and CFD techniques and their accuracy for wind comfort assessment[J]. Building and Environment, 2016, 100: 50-81. doi: 10.1016/j.buildenv.2016.02.004
    [11] CASTRO I P, DIANAT M. Surface flow patterns on rectangular bodies in thick boundary layers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 11(1/2/3): 107-119.
    [12] ZHAO Z. Wind flow characteristics and their effects on low-rise buildings[D]. Lubbock: Texas Tech University, 1997.
    [13] KIYA M, SASAKI K. Structure of large-scale vortices and unsteady reverse flow in the reattaching zone of a turbulent separation bubble[J]. Journal of Fluid Mechanics, 1985, 154: 463-491. doi: 10.1017/S0022112085001628
    [14] KIM K C, JI H S, SEONG S H. Flow structure around a 3-D rectangular prism in a turbulent boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(5): 653-669. doi: 10.1016/S0167-6105(02)00459-2
    [15] AKON A F, KOPP G A. Turbulence structure and similarity in the separated flow above a low building in the atmospheric boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 182: 87-100. doi: 10.1016/j.jweia.2018.09.016
    [16] 董欣,叶继红. 大跨屋盖表面旋涡的PIV试验研究[J]. 工程力学,2014,31(11): 161-169. doi: 10.6052/j.issn.1000-4750.2013.05.0486

    DONG Xin, YE Jihong. PIV experimental investigation of vortices on large-span roofs[J]. Engineering Mechanics, 2014, 31(11): 161-169. doi: 10.6052/j.issn.1000-4750.2013.05.0486
    [17] MAJOWIECKI M. Snow and wind experimental analysis in the design of long-span sub-horizontal structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74/75/76: 795-807.
    [18] HOLICKY M, SYKORA M. Failures of roofs under snow load: Causes and reliability analysis [M]. Washington D. C.: Pathology of the Built Environment, 2010: 444-453.
    [19] COUNIHAN J. An improved method of simulating an atmospheric boundary layer in a wind tunnel[J]. Atmospheric Environment, 1969, 3(2): 197-214. doi: 10.1016/0004-6981(69)90008-0
    [20] 孙虎跃,叶继红. 基于PIV技术的平屋盖表面分离泡流动结构研究[J]. 工程力学,2016,33(11): 121-131.

    SUN Huyue, YE Jihong. 3D characteristics of separation bubbles around flat roofs by PIV technique[J]. Engineering Mechanics, 2016, 33(11): 121-131.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  144
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 修回日期:  2021-06-21
  • 网络出版日期:  2022-11-09
  • 刊出日期:  2021-07-06

目录

    /

    返回文章
    返回