• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

带输送机边主梁涡振性能及抑振措施试验研究

李春光 毛禹 颜虎斌 梁爱鸿 韩艳

李春光, 毛禹, 颜虎斌, 梁爱鸿, 韩艳. 带输送机边主梁涡振性能及抑振措施试验研究[J]. 西南交通大学学报, 2022, 57(4): 886-893. doi: 10.3969/j.issn.0258-2724.20210224
引用本文: 李春光, 毛禹, 颜虎斌, 梁爱鸿, 韩艳. 带输送机边主梁涡振性能及抑振措施试验研究[J]. 西南交通大学学报, 2022, 57(4): 886-893. doi: 10.3969/j.issn.0258-2724.20210224
LI Chunguang, MAO Yu, YAN Hubin, LIANG Aihong, HAN Yan. Experimental Study on Vortex-Induced Vibration Performance and Countermeasures for Side Girder Beam with Conveyer[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 886-893. doi: 10.3969/j.issn.0258-2724.20210224
Citation: LI Chunguang, MAO Yu, YAN Hubin, LIANG Aihong, HAN Yan. Experimental Study on Vortex-Induced Vibration Performance and Countermeasures for Side Girder Beam with Conveyer[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 886-893. doi: 10.3969/j.issn.0258-2724.20210224

带输送机边主梁涡振性能及抑振措施试验研究

doi: 10.3969/j.issn.0258-2724.20210224
基金项目: 国家自然科学基金 (51978087,51822803);湖南省自然科学基金 (2020JJ14607)
详细信息
    作者简介:

    李春光(1980—),男,副教授,博士,研究方向为桥梁风工程,E-mail:mrlcg@126.com

  • 中图分类号: U448.27

Experimental Study on Vortex-Induced Vibration Performance and Countermeasures for Side Girder Beam with Conveyer

  • 摘要:

    桥面输送机改变了边主梁的气动外形,为研究其涡振性能及抑振措施,开展了1.00∶20.00刚性节段模型自由悬挂风洞试验. 首先,研究了带输送机边主梁断面涡振性能,并测试了结构阻尼比对其的影响;其次,对比了有、无输送带边主梁的涡振性能;最后,采用风嘴、梁底稳定板、水平隔流板等气动措施对主梁断面涡振性能进行了优化研究. 结果表明:带输送机边主梁在规范要求的0°、±3° 风攻角下的涡振性能均较差,最大超出规范限值286%;桥面输送机降低了主梁的涡振稳定性,涡振响应峰值提高了44%;梁底安装稳定板有利于改善主梁的涡振性能,并且与梁底同高的稳定板制振效果随其数量的增加而更优,安装3道1.5 m下稳定板对主梁涡振抑制效果达93%;伸出梁底0.5 m的2.0 m高中央稳定板能完全抑制主梁涡振;风嘴对主梁的涡振性能影响较弱,但在一定范围内具有最优角度取值;梁底单独布置水平隔流板,涡振响应峰值降低17%;优化主梁截面采用风嘴 + 风嘴水平分流板 + 1 m宽水平隔流板,主梁涡振响应峰值降低92%,且远低于规范限值.

     

  • 图 1  桥型布置(单位:cm)

    Figure 1.  Bridge layout (unit:cm)

    图 2  风洞节段模型试验

    Figure 2.  Wind tunnel test of section model

    图 3  原断面涡振性能

    Figure 3.  Vortex-induced vibration performance of original section

    图 4  阻尼比对主梁涡振响应的影响

    Figure 4.  Influence of damping ratio on vortex-induced vibration performance of main girder

    图 5  输送机对主梁涡振响应的影响

    Figure 5.  Influence of conveyer on vortex-induced vibration performance of main girder

    图 6  主梁风嘴布置

    Figure 6.  Layout of air nozzles on main girder

    图 7  风嘴角度对主梁涡振响应的影响

    Figure 7.  Influence of air nozzle angle onvortex-induced vibration performance of main girder

    图 8  稳定板布置

    Figure 8.  Layout of stabilizing plates

    图 9  梁底稳定板对主梁涡振响应的影响

    Figure 9.  Influence of stabilizing plates onvortex-induced vibration performance of main girder

    图 10  水平隔流板布置

    Figure 10.  Layout of the horizontal flow-isolating

    图 11  水平隔流板对主梁涡振响应的影响

    Figure 11.  Influence of horizontal baffles onvortex-induced vibration performance of main girder

    图 12  组合措施布置

    Figure 12.  Layout of combined countermeasure

    图 13  组合措施对主梁涡振响应的影响

    Figure 13.  Influence of combined countermeasure on vortex-induced vibration performance

    表  1  模型与实桥参数

    Table  1.   Parameters of model and prototype

    项目 长度/m 宽度/m 单位质量/
    (kg•m−1
    单位质量惯性矩/
    (kg•m2•m−1
    竖向
    频率/Hz
    扭转
    频率/Hz
    风速比 竖向阻尼比/% 扭转阻尼比/%
    实桥 30.40 12.12 5976.00 136055.00 0.539 0.857
    模型 1.52 0.61 14.94 0.85 5.643 8.655 0.25 0.28
    缩尺比 1.00∶20.00 1.00∶20.00 1.00∶400.00 1.00∶160 000.00 1.00∶10.46 1.00∶10.09 1.00∶1.91
    下载: 导出CSV

    表  2  气动措施优化工况

    Table  2.   Aerodynamic optimization measures

    工况措施状态
    1原设计断面
    2风嘴45°
    360°
    478°
    590°
    6下稳定板1 道 1.5 m下稳定板
    72 道 1.5 m下稳定板
    83 道 1.5 m下稳定板
    91 道 2.0 m下稳定板
    10水平
    隔流板
    0.6 m
    111.0 m
    12组合
    措施
    工况 4 + 工况 10 + 0.3 m 风嘴水平分流板
    13工况 4 + 工况 11 + 0.3 m 风嘴水平分流板
    下载: 导出CSV
  • [1] 葛耀君. 大跨度斜拉桥抗风[M]. 北京: 人民交通出版社, 2019.
    [2] 管青海,李加武,胡兆同,等. 栏杆对典型桥梁断面涡激振动的影响研究[J]. 振动与冲击,2014,33(3): 150-156. doi: 10.3969/j.issn.1000-3835.2014.03.029

    GUAN Qinghai, LI Jiawu, HU Zhaotong, et al. Effects of railings on vortex-induced vibration of a bridge deck section[J]. Journal of Vibration and Shock, 2014, 33(3): 150-156. doi: 10.3969/j.issn.1000-3835.2014.03.029
    [3] 刘君,廖海黎,万嘉伟,等. 检修车轨道导流板对流线型箱梁涡振的影响[J]. 西南交通大学学报,2015,50(5): 789-795. doi: 10.3969/j.issn.0258-2724.2015.05.004

    LIU Jun, LIAO Haili, WAN Jiawei, et al. Effect of guide vane beside maintenance rail on vortex-induced vibration of streamlined box girder[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 789-795. doi: 10.3969/j.issn.0258-2724.2015.05.004
    [4] 张天翼,孙延国,李明水,等. 宽幅双箱叠合梁涡振性能及抑振措施试验研究[J]. 中国公路学报,2019,32(10): 107-114,168.

    ZHANG Tianyi, SUN Yanguo, LI Mingshui, et al. Experimental study on vortex-induced vibration performance and aerodynamic countermeasures for a wide-width double-box composite beam[J]. China Journal of Highway and Transport, 2019, 32(10): 107-114,168.
    [5] 龙俊贤,周旭辉,李前名,等. 带高防护结构的边箱叠合梁斜拉桥涡振性能及抑振措施研究[J]. 铁道科学与工程学报,2021,18(1): 119-127.

    LONG Junxian, ZHOU Xuhui, LI Qianming, et al. Experimental study on vortex-induced vibration performance and aerodynamic countermeasures for a double-box composite beam cable stayed bridge with high protective structure[J]. Journal of Railway Science and Engineering, 2021, 18(1): 119-127.
    [6] 李欢,何旭辉,王汉封,等. π型断面超高斜拉桥涡振减振措施风洞试验研究[J]. 振动与冲击,2018,37(7): 62-68.

    LI Huan, HE Xuhui, WANG Hanfeng, et al. Wind tunnel tests for vortex-induced vibration control measures of a super high cable-stayed bridge with π-cross section[J]. Journal of Vibration and Shock, 2018, 37(7): 62-68.
    [7] 李春光,黄静文,张记,等. 边主梁叠合梁涡振性能气动优化措施风洞试验研究[J]. 振动与冲击,2018,37(17): 86-92.

    LI Chunguang, HUANG Jingwen, ZHANG Ji, et al. Aerodynamic optimization measures for VIV performances of a side girder composite beam based on wind tunnel tests[J]. Journal of Vibration and Shock, 2018, 37(17): 86-92.
    [8] 张志田,卿前志,肖玮,等. 开口截面斜拉桥涡激共振风洞试验及减振措施研究[J]. 湖南大学学报(自然科学版),2011,38(7): 1-5.

    ZHANG Zhitian, QING Qianzhi, XIAO Wei, et al. Vortex-induced vibration and control method for a cable-stayed bridge with open cross section[J]. Journal of Hunan University (Natural Sciences), 2011, 38(7): 1-5.
    [9] IRWIN P A. Bluff body aerodynamics in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6/7): 701-712.
    [10] KUBO Y, SADASHIMA K, YAMAGUCHI E, et al. Improvement of aeroelastic instability of shallow π section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14/15): 1445-1457.
    [11] 赵林,李珂,王昌将,等. 大跨桥梁主梁风致稳定性被动气动控制措施综述[J]. 中国公路学报,2019,32(10): 34-48.

    ZHAO Lin, LI Ke, WANG Changjiang, et al. Review on passive aerodynamic countermeasures on main girders aiming at wind-induced stabilities of long-span bridges[J]. China Journal of Highway and Transport, 2019, 32(10): 34-48.
    [12] KUBO Y, KIMURA K, SADASHIMA K, et al. Aerodynamic performance of improved shallow π shape bridge deck[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12/13/14/15): 2113-2125.
    [13] LI K, QIAN G, GE Y J, et al. Control effect and mechanism investigation on the horizontal flow-isolating plate for PI shaped bridge decks’ VIV stability[J]. Wind and Structure, 2019, 28(2): 99-110.
    [14] 钱国伟,曹丰产,葛耀君. Ⅱ型叠合梁斜拉桥涡振性能及气动控制措施研究[J]. 振动与冲击,2015,34(2): 176-181.

    QIAN Guowei, CAO Fengchan, GE Yaojun. Vortex-induced vibration performance of a cable-stayed bridge with Ⅱ shaped composite deck and its aerodynamic control measures[J]. Journal of Vibration and Shock, 2015, 34(2): 176-181.
    [15] 孟晓亮,郭震山,丁泉顺,等. 风嘴角度对封闭和半封闭箱梁涡振及颤振性能的影响[J]. 工程力学,2011,28(增1): 184-188,194.

    MENG Xiaoliang, GUO Zhenshan, DING Quanshun, et al. Influence of wind fairing angle on vortex-induced vibrations and flutter performances of closed and semi-closed box decks[J]. Engineering Mechanics, 2011, 28(S1): 184-188,194.
    [16] 颜宇光,杨詠昕,周锐. 开口断面主梁斜拉桥的涡激共振控制试验研究[J]. 中国科技论文,2015,10(7): 760-764,787.

    YAN Yuguang, YANG Yongxin, ZHOU Rui. Experimental study on vortex-induced vibration control measure for cable-stayed bridge with open sections[J]. China Sciencepaper, 2015, 10(7): 760-764,787.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  118
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 修回日期:  2021-06-29
  • 刊出日期:  2021-07-12

目录

    /

    返回文章
    返回