• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

孤立波浪边界干扰下流线型箱梁气动特性

殷瑞涛 祝兵 田源 杨镇宇 杨志莹

殷瑞涛, 祝兵, 田源, 杨镇宇, 杨志莹. 孤立波浪边界干扰下流线型箱梁气动特性[J]. 西南交通大学学报, 2023, 58(2): 398-405, 413. doi: 10.3969/j.issn.0258-2724.20210211
引用本文: 殷瑞涛, 祝兵, 田源, 杨镇宇, 杨志莹. 孤立波浪边界干扰下流线型箱梁气动特性[J]. 西南交通大学学报, 2023, 58(2): 398-405, 413. doi: 10.3969/j.issn.0258-2724.20210211
YIN Ruitao, ZHU Bing, TIAN Yuan, YANG Zhenyu, YANG Zhiying. Aerodynamic Performance of Streamlined Box Girder Under Interferences from Solitary Wave Boundary[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 398-405, 413. doi: 10.3969/j.issn.0258-2724.20210211
Citation: YIN Ruitao, ZHU Bing, TIAN Yuan, YANG Zhenyu, YANG Zhiying. Aerodynamic Performance of Streamlined Box Girder Under Interferences from Solitary Wave Boundary[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 398-405, 413. doi: 10.3969/j.issn.0258-2724.20210211

孤立波浪边界干扰下流线型箱梁气动特性

doi: 10.3969/j.issn.0258-2724.20210211
基金项目: 国家自然科学基金(U1834207)
详细信息
    作者简介:

    殷瑞涛(1995—),男,博士研究生,研究方向为跨海桥梁风浪耦合动力学,E-mail: yinruitao@my.swjtu.edu.cn

    通讯作者:

    祝兵(1965—),男,教授,研究方向为桥梁结构动力学及桥梁风浪耦合动力学,E-mail:zhubing126@126.com

  • 中图分类号: U441.3

Aerodynamic Performance of Streamlined Box Girder Under Interferences from Solitary Wave Boundary

  • 摘要:

    近海流线型箱梁主梁距水面较低时,气动特性极易受到极端波浪边界的干扰.为研究极端波浪边界干扰下流线型箱梁气动特性,以孤立波浪模拟极端波浪,基于FLUENT软件,采用铺层网格技术建立了模拟运动孤立波浪边界干扰下流线型箱梁气动特性的数值模型;利用所建立并验证的数值模型研究了不同参数下运动孤立波浪边界对流线型箱梁气动特性(静气动力系数、涡量场以及平均压力系数和脉动压力系数分布)的干扰. 分析结果表明:不同孤立波浪边界运动速度干扰下流线型箱梁气动特性明显区别于无波浪工况;随波浪边界运动,迎风角处剪切层方向相比于梁底转折角处(8° 风攻角)及梁顶转折角处(−8° 风攻角)剪切层方向变化明显;在运动孤立波浪边界干扰下,箱梁抖振响应会随风攻角幅值增大呈增大趋势.

     

  • 图 1  流线型箱梁原型图(单位:cm)

    Figure 1.  Prototype of the streamlined box girder (unit:cm)

    图 2  计算区域划分

    Figure 2.  Configuration of the computational fluid domain

    图 3  部分计算网格划分图

    Figure 3.  Partial computational grid details

    图 4  三分力正方向及压力测点位置

    Figure 4.  Positive directions of the aerostatic force coefficients and positions of the pressure measuring points

    图 5  风洞试验模型

    Figure 5.  Model of the test model in the wind tunnel

    图 6  不同v/U及无波浪工况下三分力系数变化曲线

    Figure 6.  Variation curves of aerostatic force coefficients under different v/U and no-wave cases

    图 7  不同风攻角α下三分力系数变化曲线

    Figure 7.  Variation curves of aerostatic force coefficients under different wind attack angles α

    图 8  α=0° 时${\overline C}_{\mathrm{p}}$${\widetilde C}_{\mathrm{p}}$分布(负值指向截面外侧)

    Figure 8.  ${\overline C}_{\mathrm{p}}$ and ${\widetilde C}_{\mathrm{p}}$ distributions for α=0° (negative values point outward the section)

    图 9  α=8° 涡量图

    Figure 9.  Vorticity magnitude field for α=8°

    图 10  α=8° 时${\overline C}_{\mathrm{p}}$${\widetilde C}_{\mathrm{p}}$分布

    Figure 10.  ${\overline C}_{\mathrm{p}}$ and ${\widetilde C}_{\mathrm{p}}$ distributions for α=8°

    图 11  α=−8° 涡量图

    Figure 11.  Vorticity magnitude field for α=−8°

    图 12  α=−8° 时${\overline C}_{\mathrm{p}}$${\widetilde C}_{\mathrm{p}}$分布

    Figure 12.  ${\overline C}_{\mathrm{p}}$ and ${\widetilde C}_{\mathrm{p}}$ distributions for α=−8°

    表  1  典型工况风洞试验与数值模拟结果对比

    Table  1.   Comparison of results between the wind tunnel test and numerical simulation of typical cases

    h1/mx/Bα/ (°)${ {\overline{C}}_{ {\rm{d} } } }$${ {\overline{C}}_{ {\rm{l} } } }$${ {\overline{C}}_{ {\rm{m} } } }$
    试验CFD试验CFD试验CFD
    0.48−1.0−4 0.0430.035−0.803−0.747−0.198−0.189
    0.48−0.5−4 0.1160.105−0.870−0.809−0.196−0.185
    0.480 −4 0.6140.555−0.560−0.625−0.080−0.076
    0.48 0.5−4 0.8100.797−0.543−0.641−0.008−0.014
    0.48 1.0−4 0.6570.632−0.413−0.502−0.010−0.016
    0.48−1.000.0690.071−0.550−0.540−0.097−0.088
    0.48−0.500.1100.102−0.514−0.496−0.079−0.062
    0.480 00.2800.255−0.359−0.426 0.035 0.029
    0.48 0.500.5010.462−0.196−0.222 0.137 0.100
    0.48 1.000.3260.358−0.021−0.026 0.127 0.092
    0.48−1.040.0340.029−0.206−0.262 0.017 0.026
    0.48−0.540.0810.076−0.255−0.313 0.045 0.044
    0.480 40.1070.098−0.089−0.106 0.175 0.141
    0.48 0.540.3170.286 0.331 0.267 0.218 0.203
    0.48 1.040.3010.279 0.504 0.422 0.199 0.190
    下载: 导出CSV
  • [1] ZHOU Z Y, MAO W H, DING Q S. Experimental and numerical studies on flutter stability of a closed box girder accounting for ground effects[J]. Journal of Fluids and Structures, 2019, 84: 1-17. doi: 10.1016/j.jfluidstructs.2018.09.009
    [2] LIN Pengzhi. Numerical modeling of water waves[M]. Oxford: Taylor & Francis, 2008.
    [3] ANDO S, SAKAI T, NITTA K. Analysis of motion of airf-oil flying over wavy-wall surface (lifting surface method)[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 1992, 35(107): 27-38.
    [4] MORISHITA E, ASHIHARA K. Ground effect calculati-on of a two-dimensional airfoil over a wavy surface[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 1996, 39(125): 274-282.
    [5] 许福友, 李文江, 张哲, 等. 海浪强干扰条件下风场特性风洞试验研究[C]//第八届全国随机振动理论与应用学术会议暨第一届全国随机动力学学术会议. 成都: [s.n.], 2012: 203-208.
    [6] 孙丽明,曹曙阳,李明,等. 考虑波浪形底面影响的边界层风场大涡模拟[J]. 空气动力学学报,2014,32(4): 534-543.

    SUN Liming, CAO Shuyang, LI Ming, et al. Large-eddy simulation of fully developed turbulent flow over a wavy surface[J]. ACTA Aerodynamica Sinica, 2014, 32(4): 534-543.
    [7] LEE T, TREMBLAY-DIONNE V. Experimental in-vestigation of the aerodynamics and flow field of a NACA 0015 airfoil over a wavy ground[J]. Journal of Fluids Engineering, 2018, 140: 071202.1-071202.10.
    [8] 李妍,陈希,费树岷. 海浪对巡航导弹掠海飞行气动性能的影响[J]. 弹箭与制导学报,2014,34(3): 129-132.

    LI Yan, CHEN Xi, FEI Shumin. The research on influence of wave on pneumatic performance of sea-skimming cruise missile[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(3): 129-132.
    [9] 徐进. 桥下净空对大跨桥梁主梁气动特性的影响[D]. 长沙: 湖南大学, 2014.
    [10] 李少杰,刘小兵,杨群,等. 分离双扁平箱梁气动力干扰效应研究[J]. 工程力学,2017,34(增l): 89-93.

    LI Shaojie, LIU Xiaobing, YANG Qun, et al. Study on interference effect of aerodynamic force of twin separate flat box girders[J]. Engineering Mechanics, 2017, 34(Sl): 89-93.
    [11] 张亮亮,吴波,杨阳,等. 附属构件及桥面粗糙度对近流线型宽体箱梁气动静力系数的影响[J]. 实验流体力学,2016,30(1): 74-80.

    ZHANG Liangliang, WU Bo, YANG Yang, et al. Effects of subsidiary members and deck surface roughness on the aerodynamic coefficients of static forces on a flat box girder[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 74-80.
    [12] 汪荣绣. 海浪气动干扰条件下桥梁气动性能试验研究 [D]. 大连: 大连理工大学, 2014.
    [13] 张家玮,康啊真,祝兵,等. 孤立波边界对流线型箱梁静气动力系数的影响[J]. 铁道科学与工程学报,2019,16(10): 2497-2504.

    ZHANG Jiawei, KANG Azhen, ZHU Bing, et al. Effect of solitary wave boundary on aerostatic coefficients of a streamlined box girder[J]. Journal of Railway Science and Engineering, 2019, 16(10): 2497-2504.
    [14] KUBO Y, MIYAZAKI M, KATO K. Effects of end plates and blockage of structural members on drag forces[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1989, 32(3): 329-342. doi: 10.1016/0167-6105(89)90006-8
    [15] HOLMES J D. Wind loading of structures[M]. Boca Raton: Taylor & Francis Group, 2015.
    [16] MERCKER E. A blockage correction for automotive testing in a wind tunnel with closed test section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1986, 22(2/3): 149-167.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  343
  • HTML全文浏览量:  133
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 修回日期:  2021-06-25
  • 网络出版日期:  2022-11-14
  • 刊出日期:  2021-09-09

目录

    /

    返回文章
    返回