Aerodynamic Performance of Streamlined Box Girder Under Interferences from Solitary Wave Boundary
-
摘要:
近海流线型箱梁主梁距水面较低时,气动特性极易受到极端波浪边界的干扰.为研究极端波浪边界干扰下流线型箱梁气动特性,以孤立波浪模拟极端波浪,基于FLUENT软件,采用铺层网格技术建立了模拟运动孤立波浪边界干扰下流线型箱梁气动特性的数值模型;利用所建立并验证的数值模型研究了不同参数下运动孤立波浪边界对流线型箱梁气动特性(静气动力系数、涡量场以及平均压力系数和脉动压力系数分布)的干扰. 分析结果表明:不同孤立波浪边界运动速度干扰下流线型箱梁气动特性明显区别于无波浪工况;随波浪边界运动,迎风角处剪切层方向相比于梁底转折角处(8° 风攻角)及梁顶转折角处(−8° 风攻角)剪切层方向变化明显;在运动孤立波浪边界干扰下,箱梁抖振响应会随风攻角幅值增大呈增大趋势.
Abstract:When an offshore streamlined box girder is close to the water surface, the aerodynamic performance is easily interfered by extreme wave boundary conditions. To investigate the aerodynamic performance of the streamlined box girder under interferences from extreme wave boundary, the extreme wave is simulated using solitary wave. Based on FLUENT software, a numerical model for the aerodynamic performance of the streamlined box girder under interferences from moving solitary wave boundary is established by layering mesh method. The model is validated and then used to study the interferences from the moving solitary wave boundary on the aerodynamic performance, including aerostatic force coefficients, vorticity magnitude field, and distributions of the mean and fluctuating pressure coefficients of the streamlined box girder, under different parameters of wave boundary moving speed, wind attack angle and bridge clearance. The analysis results show that the aerodynamic performance of the streamlined box girder under the interferences from different solitary wave boundary moving speeds is apparently different from that of no-wave case. With wave boundary moving forward, the direction of the shear layer at the windward corner changes significantly compared to that at the corner of bottom surface (8° wind attack angle) and the top corner of upper leeward surface (−8° wind attack angle). Under the interferences from the moving solitary wave boundary, the buffeting response of the girder will be strengthened with the increment of the magnitudes of wind attack angles.
-
表 1 典型工况风洞试验与数值模拟结果对比
Table 1. Comparison of results between the wind tunnel test and numerical simulation of typical cases
h1/m x/B α/ (°) ${ {\overline{C}}_{ {\rm{d} } } }$ ${ {\overline{C}}_{ {\rm{l} } } }$ ${ {\overline{C}}_{ {\rm{m} } } }$ 试验 CFD 试验 CFD 试验 CFD 0.48 −1.0 −4 0.043 0.035 −0.803 −0.747 −0.198 −0.189 0.48 −0.5 −4 0.116 0.105 −0.870 −0.809 −0.196 −0.185 0.48 0 −4 0.614 0.555 −0.560 −0.625 −0.080 −0.076 0.48 0.5 −4 0.810 0.797 −0.543 −0.641 −0.008 −0.014 0.48 1.0 −4 0.657 0.632 −0.413 −0.502 −0.010 −0.016 0.48 −1.0 0 0.069 0.071 −0.550 −0.540 −0.097 −0.088 0.48 −0.5 0 0.110 0.102 −0.514 −0.496 −0.079 −0.062 0.48 0 0 0.280 0.255 −0.359 −0.426 0.035 0.029 0.48 0.5 0 0.501 0.462 −0.196 −0.222 0.137 0.100 0.48 1.0 0 0.326 0.358 −0.021 −0.026 0.127 0.092 0.48 −1.0 4 0.034 0.029 −0.206 −0.262 0.017 0.026 0.48 −0.5 4 0.081 0.076 −0.255 −0.313 0.045 0.044 0.48 0 4 0.107 0.098 −0.089 −0.106 0.175 0.141 0.48 0.5 4 0.317 0.286 0.331 0.267 0.218 0.203 0.48 1.0 4 0.301 0.279 0.504 0.422 0.199 0.190 -
[1] ZHOU Z Y, MAO W H, DING Q S. Experimental and numerical studies on flutter stability of a closed box girder accounting for ground effects[J]. Journal of Fluids and Structures, 2019, 84: 1-17. doi: 10.1016/j.jfluidstructs.2018.09.009 [2] LIN Pengzhi. Numerical modeling of water waves[M]. Oxford: Taylor & Francis, 2008. [3] ANDO S, SAKAI T, NITTA K. Analysis of motion of airf-oil flying over wavy-wall surface (lifting surface method)[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 1992, 35(107): 27-38. [4] MORISHITA E, ASHIHARA K. Ground effect calculati-on of a two-dimensional airfoil over a wavy surface[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 1996, 39(125): 274-282. [5] 许福友, 李文江, 张哲, 等. 海浪强干扰条件下风场特性风洞试验研究[C]//第八届全国随机振动理论与应用学术会议暨第一届全国随机动力学学术会议. 成都: [s.n.], 2012: 203-208. [6] 孙丽明,曹曙阳,李明,等. 考虑波浪形底面影响的边界层风场大涡模拟[J]. 空气动力学学报,2014,32(4): 534-543.SUN Liming, CAO Shuyang, LI Ming, et al. Large-eddy simulation of fully developed turbulent flow over a wavy surface[J]. ACTA Aerodynamica Sinica, 2014, 32(4): 534-543. [7] LEE T, TREMBLAY-DIONNE V. Experimental in-vestigation of the aerodynamics and flow field of a NACA 0015 airfoil over a wavy ground[J]. Journal of Fluids Engineering, 2018, 140: 071202.1-071202.10. [8] 李妍,陈希,费树岷. 海浪对巡航导弹掠海飞行气动性能的影响[J]. 弹箭与制导学报,2014,34(3): 129-132.LI Yan, CHEN Xi, FEI Shumin. The research on influence of wave on pneumatic performance of sea-skimming cruise missile[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(3): 129-132. [9] 徐进. 桥下净空对大跨桥梁主梁气动特性的影响[D]. 长沙: 湖南大学, 2014. [10] 李少杰,刘小兵,杨群,等. 分离双扁平箱梁气动力干扰效应研究[J]. 工程力学,2017,34(增l): 89-93.LI Shaojie, LIU Xiaobing, YANG Qun, et al. Study on interference effect of aerodynamic force of twin separate flat box girders[J]. Engineering Mechanics, 2017, 34(Sl): 89-93. [11] 张亮亮,吴波,杨阳,等. 附属构件及桥面粗糙度对近流线型宽体箱梁气动静力系数的影响[J]. 实验流体力学,2016,30(1): 74-80.ZHANG Liangliang, WU Bo, YANG Yang, et al. Effects of subsidiary members and deck surface roughness on the aerodynamic coefficients of static forces on a flat box girder[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 74-80. [12] 汪荣绣. 海浪气动干扰条件下桥梁气动性能试验研究 [D]. 大连: 大连理工大学, 2014. [13] 张家玮,康啊真,祝兵,等. 孤立波边界对流线型箱梁静气动力系数的影响[J]. 铁道科学与工程学报,2019,16(10): 2497-2504.ZHANG Jiawei, KANG Azhen, ZHU Bing, et al. Effect of solitary wave boundary on aerostatic coefficients of a streamlined box girder[J]. Journal of Railway Science and Engineering, 2019, 16(10): 2497-2504. [14] KUBO Y, MIYAZAKI M, KATO K. Effects of end plates and blockage of structural members on drag forces[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1989, 32(3): 329-342. doi: 10.1016/0167-6105(89)90006-8 [15] HOLMES J D. Wind loading of structures[M]. Boca Raton: Taylor & Francis Group, 2015. [16] MERCKER E. A blockage correction for automotive testing in a wind tunnel with closed test section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1986, 22(2/3): 149-167. -