• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

乐山大佛胸部渗水病害特征研究

孙博 张虎元 张鹏 申喜旺 杨天宇

孙博, 张虎元, 张鹏, 申喜旺, 杨天宇. 乐山大佛胸部渗水病害特征研究[J]. 西南交通大学学报, 2023, 58(5): 1037-1044. doi: 10.3969/j.issn.0258-2724.20210194
引用本文: 孙博, 张虎元, 张鹏, 申喜旺, 杨天宇. 乐山大佛胸部渗水病害特征研究[J]. 西南交通大学学报, 2023, 58(5): 1037-1044. doi: 10.3969/j.issn.0258-2724.20210194
SUN Bo, ZHANG Huyuan, ZHANG Peng, SHEN Xiwang, YANG Tianyu. Study on Characteristics of Water Seepage in Chest of Leshan Giant Buddha[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1037-1044. doi: 10.3969/j.issn.0258-2724.20210194
Citation: SUN Bo, ZHANG Huyuan, ZHANG Peng, SHEN Xiwang, YANG Tianyu. Study on Characteristics of Water Seepage in Chest of Leshan Giant Buddha[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1037-1044. doi: 10.3969/j.issn.0258-2724.20210194

乐山大佛胸部渗水病害特征研究

doi: 10.3969/j.issn.0258-2724.20210194
基金项目: 国家自然科学基金(51808246);国家重点研发计划(2019YFC1520500)
详细信息
    作者简介:

    孙博(1984—),男,工程师,研究方向为石质文物保护,E-mail:xbysunbo@163.com

  • 中图分类号: P642.5

Study on Characteristics of Water Seepage in Chest of Leshan Giant Buddha

  • 摘要:

    为给乐山大佛渗水病害治理及后期保护研究提供科学依据,本研究首次对乐山大佛渗水及大气降水进行定量监测采样,分析大佛渗水来源及其特征,并结合水化学性质和岩石组成对“大佛砂岩”风化机理进行了研究. 研究表明:乐山大佛胸部渗水在平水期与枯水期主要补给来源为地下水,丰水期主要补给来源为大气降水;大佛胸部渗水含有大量溶解质组分,pH平均值为7.70,2009年之后乐山市降水年平均pH>5.60且逐年增高,至2015年全年降水pH平均值大于7.00,降水已由酸性转为碱性;大佛胸部渗水水化学类型为碳酸盐类-钙组-Ⅱ型与硫酸盐类-钙组-Ⅲ型,阳离子以Ca2 + 为主,阴离子以SO42− 与HCO3 为主;大佛胸部岩石主要成分为CaCO3和SiO2,在空气和水存在的情况下容易发生溶蚀,岩石风化对大佛渗水中离子贡献超过90%,H2CO3与H2SO4共同参与了“大佛砂岩”的风化.

     

  • 图 1  乐山大佛胸部渗水点位

    Figure 1.  Seepage points of Leshan Giant Buddha′s chest

    图 2  大佛胸部渗水量

    Figure 2.  Seepage water in the chest of giant Buddha

    图 3  渗水量与降水强度随时间变化曲线

    Figure 3.  Variation curves of seepage water and rainfall intensity with time

    图 4  乐山大佛降水历年pH变化

    Figure 4.  PH changes of Leshan Giant Buddha precipitation over the years

    图 5  2019年大气中SO2和NO2含量

    Figure 5.  SO2 and NO2 in the atmosphere in 2019

    图 6  pH随时间变化

    Figure 6.  PH changes with time

    图 7  渗水EC值随时间变化

    Figure 7.  EC value of seepage water changes with time

    图 8  渗水TDS随时间变化

    Figure 8.  TDS of seepage water changes with time

    图 9  渗水中各离子浓度随时间变化

    Figure 9.  Concentration of ions in seepage water changes with time

    图 10  岩石采样位置

    Figure 10.  Rock sampling location

    图 11  扫描电子显微镜

    Figure 11.  Scanning Electron Microscope

    图 12  渗水 (Ca2 + + Mg2 + )/(HCO3 + SO42−)当量比值

    Figure 12.  (Ca2 + + Mg2 + )/(HCO3 + SO42−) of water seepage

    表  1  渗水离子贡献

    Table  1.   Contributions to seepage ions

    离子渗水/
    (mmol•L)−1
    大气降水/
    (mmol•L)−1
    降水
    贡献/%
    岩石风化
    贡献/%
    Ca2 + 19.920.034199
    K + 0.8800100
    Mg2 + 2.7200100
    Na + 1.240.028694
    CI1.190.033991
    NO31.800.0181486
    HCO31.070.0311189
    SO42−19.000.132496
    注:0代表离子浓度低于仪器检测限.
    下载: 导出CSV

    表  2  X射线荧光

    Table  2.   X-Ray fluorescence %

    样品SiO2CaOAl2O3MgONa2OK2OFe2O
    46B55.4113.289.872.081.461.962.59
    46C56.3215.258.852.752.651.452.32
    46D56.3215.258.852.752.651.452.32
    46+B49.5315.069.812.771.541.692.73
    46+C52.3513.1610.542.261.601.892.94
    46+D52.5413.5210.282.021.631.783.08
    47B55.8410.1512.033.781.512.263.35
    47C50.369.9914.312.751.451.792.85
    47D59.4910.398.852.981.532.082.98
    47+B55.0810.6511.613.141.512.063.53
    47+C55.0910.6511.613.141.512.063.59
    47+D54.3611.4510.673.081.552.113.72
    48B55.6211.4910.292.041.571.862.66
    48C55.0910.6511.613.141.512.063.53
    48D54.3610.6711.453.081.552.113.72
    下载: 导出CSV
  • [1] 四川省文物考古研究所, 乐山大佛乌尤文物保护管理局. 治理乐山大佛的前期研究[M]. 成都: 四川科学技术出版社, 2002.
    [2] 方云,邓长青,李宏松. 石质文物风化病害防治的环境地质问题[J]. 现代地质,2001,15(4): 458-461.

    FANG Yun, DENG Changqing, LI Hongsong. Environment geological problems in prevention and cure of weathering diseases of carved stone relics[J]. Geoscience, 2001, 15(4): 458-461.
    [3] 黄继忠. 云冈石窟主要病害及治理[J]. 雁北师范学院学报,2003,19(5): 57-59.

    HUANG Jizhong. Main damages and preservation of the Yungang grottoes[J]. Journal of Yanbei Normal University, 2003, 19(5): 57-59.
    [4] 严绍军,方云,孙兵,等. 渗水对龙门石窟的影响及治理分析[J]. 现代地质,2005,19(3): 475-478.

    YAN Shaojun, FANG Yun, SUN Bing, et al. Influence of water permeation and analysis of treatment for the Longmen grottoes[J]. Geoscience, 2005, 19(3): 475-478.
    [5] 俞剑清,张秉坚,邵浦建,等. 浙江省石窟寺及石刻类文物健康评估调研综述[J]. 石材,2018(3): 29-36.

    YU Jianqing, ZHANG Bingjian, SHAO Pujian, et al. Survey on health assessment of cave temples and stone carvings in Zhejiang Province[J]. Stone, 2018(3): 29-36.
    [6] 秦中,张捷,彭学艺,等. 四川乐山大佛风化的初步探讨[J]. 地理研究,2005,24(6): 928-934.

    QIN Zhong, ZHANG Jie, PENG Xueyi, et al. A study on weathering processes of Leshan Grand Buddha, Sichuan, China[J]. Geographical Research, 2005, 24(6): 928-934.
    [7] 舒代宁, 邓雪锋. 世界遗产乐山大佛景区酸沉降及防治对策研究[C]//2007中国可持续发展论坛暨中国可持续发展学术年会论文集(3). 北京: [出版者不详], 2007: 1-5.
    [8] 程远琼, 欧山. 乐山大佛景区酸雨污染趋势及成因分析[C]//2015年中国环境科学学会学术年会论文集. 北京: 北京航空航天大学出版社, 2015: 1159-1162.
    [9] LIU X Y, XIAO H W, XIAO H Y, et al. Stable isotope analyses of precipitation nitrogen sources in Guiyang, southwestern China[J]. Environmental Pollution, 2017, 230: 486-494. doi: 10.1016/j.envpol.2017.06.010
    [10] CALVO-FERNÁNDEZ J, MARCOS E, CALVO L. Bulk deposition of atmospheric inorganic nitrogen in mountainous heathland ecosystems in North-Western Spain[J]. Atmospheric Research, 2017, 183: 237-244. doi: 10.1016/j.atmosres.2016.09.006
    [11] SONG X F, LIU X C, XIA J, et al. A study of interaction between surface water and groundwater using environmental isotope in Huaisha River Basin[J]. Science in China Series D: Earth Sciences, 2006, 49(12): 1299-1310. doi: 10.1007/s11430-006-1299-z
    [12] MOON S, HUH Y, QIN J H, et al. Chemical weathering in the Hong (Red) River Basin: rates of silicate weathering and their controlling factors[J]. Geochimica et Cosmochimica Acta, 2007, 71(6): 1411-1430. doi: 10.1016/j.gca.2006.12.004
    [13] 高蔺云,黄晓荣,奚圆圆,等. 基于云模型的四川盆地气候变化时空分布特征分析[J]. 华北水利水电大学学报(自然科学版),2017,38(1): 1-7.

    GAO Linyun, HUANG Xiaorong, XI Yuanyuan, et al. Analysis on characteristics of temporal-spatial climate distribution in Sichuan basin based on cloud model[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2017, 38(1): 1-7.
    [14] FULLER B M, SKLAR L S, COMPSON Z G, et al. Ecogeomorphic feedbacks in regrowth of travertine step-pool morphology after dam decommissioning, Fossil Creek, Arizona[J]. Geomorphology, 2011, 126(3/4): 314-332.
    [15] ZHANG Q Q, JIN Z D, ZHANG F, et al. Seasonal variation in river water chemistry of the middle reaches of the Yellow River and its controlling factors[J]. Journal of Geochemical Exploration, 2015, 156: 101-113. doi: 10.1016/j.gexplo.2015.05.008
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  76
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-23
  • 修回日期:  2022-03-21
  • 网络出版日期:  2023-05-27
  • 刊出日期:  2022-03-24

目录

    /

    返回文章
    返回