• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

不同岩石和围压下刃形对滚刀破岩性能的影响

张蒙祺 王一博 章龙管 段文军 苏叶茂 莫继良 周仲荣

张蒙祺, 王一博, 章龙管, 段文军, 苏叶茂, 莫继良, 周仲荣. 不同岩石和围压下刃形对滚刀破岩性能的影响[J]. 西南交通大学学报, 2023, 58(2): 332-339. doi: 10.3969/j.issn.0258-2724.20210171
引用本文: 张蒙祺, 王一博, 章龙管, 段文军, 苏叶茂, 莫继良, 周仲荣. 不同岩石和围压下刃形对滚刀破岩性能的影响[J]. 西南交通大学学报, 2023, 58(2): 332-339. doi: 10.3969/j.issn.0258-2724.20210171
ZHANG Mengqi, WANG Yibo, ZHANG Longguan, DUAN Wenjun, SU Yemao, MO Jiliang, ZHOU Zhongrong. Effects of TBM Cutter Profile on Rock Fragmentation Under Different Rock Type and Confining Pressure Conditions[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 332-339. doi: 10.3969/j.issn.0258-2724.20210171
Citation: ZHANG Mengqi, WANG Yibo, ZHANG Longguan, DUAN Wenjun, SU Yemao, MO Jiliang, ZHOU Zhongrong. Effects of TBM Cutter Profile on Rock Fragmentation Under Different Rock Type and Confining Pressure Conditions[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 332-339. doi: 10.3969/j.issn.0258-2724.20210171

不同岩石和围压下刃形对滚刀破岩性能的影响

doi: 10.3969/j.issn.0258-2724.20210171
基金项目: 国家自然科学基金(52005419);四川省科技重点研发项目(21ZDYF3658)
详细信息
    作者简介:

    张蒙祺(1989—),男,助理研究员,博士,研究方向为接触力学与摩擦学,E-mail:mzhang@swjtu.edu.cn

    通讯作者:

    莫继良(1982—),男,研究员,博士,研究方向为摩擦学与动力学,E-mail:jlmo@swjtu.cn

  • 中图分类号: TH122

Effects of TBM Cutter Profile on Rock Fragmentation Under Different Rock Type and Confining Pressure Conditions

  • 摘要:

    滚刀位于全断面隧道掘进机(TBM)最前端,与岩石直接发生接触,是执行破岩掘进的关键零部件. 研究TBM滚刀截面轮廓(刃形)对其破岩性能的影响机理和规律,对指导工程实际中滚刀选型与设计、提高TBM掘进效率具有重要意义. 首先建立二维颗粒流离散元模型,针对工程中最常用的平头滚刀和圆弧滚刀,选取两种强度不同的岩石并对其中一种施加固定10 MPa围压;然后,开展滚刀破岩仿真,通过分析比能、破岩体积、刀具载荷、裂纹数量等结果,对滚刀刃形与岩石破碎的关联性进行研究;最后,通过缩比滚刀破岩实验验证数值分析所得结论的正确性. 分析结果表明:滚刀刃形对其破岩性能影响显著,在本文所涉及参数范围内,对于多数岩石强度与围压组合,圆弧滚刀比能均低于平头滚刀比能,平均降低19.8%;圆弧滚刀破岩力比平顶滚刀破岩力平均低32.6%,表明破岩过程中圆弧滚刀做功较少,而二者产生的岩石碎片总体积相差不大(平均差值7%),则圆弧滚刀破除单位体积岩石所消耗的能量更少. 综上所述,两种常用滚刀刃形相比,在岩石强度与围压较高的地层中可考虑优先选用圆弧滚刀.

     

  • 图 1  颗粒间平行黏结示意

    Figure 1.  Schematic of particle connection

    图 2  滚刀破岩颗粒流模型及滚刀刃形

    Figure 2.  Schematics of the particle flow model for rock cutting and the cutter profiles

    图 3  不同刀间距下岩石内裂纹分布

    Figure 3.  Crack distributions under different cutter spaces

    图 4  不同刀间距下滚刀破岩仿真结果

    Figure 4.  Rock cutting results under different cutter space

    图 5  缩比滚刀破岩实验

    Figure 5.  Setup of the reduced-scale rock cutting experiment

    图 6  岩石试样典型破坏

    Figure 6.  Fragmentation of rock samples

    图 7  滚刀总法向力变化规律

    Figure 7.  Total normal force during rock cutting

    图 8  岩石碎片总体积的变化

    Figure 8.  Changes of the total volume of rock fragments

    表  1  岩石宏观力学属性

    Table  1.   Macroscopic mechanical properties of rocks

    岩石类型杨氏模量/
    GPa
    泊松比抗压强度/
    MPa
    抗拉强度/
    MPa
    玄武岩9.660.2128.406.60
    花岗岩41.30.24103.5914.73
    下载: 导出CSV

    表  2  颗粒流模型细观参数

    Table  2.   Microscopic parameters for the particle flow model

    参数类别参数名称玄武岩花岗岩
    模型通用参数颗粒直径下限/mm11
    颗粒直径上限/mm1.661.66
    颗粒密度/(kg·m−326502476
    阻尼系数0.70.7
    线性接触参数等效模量/GPa6.2825
    摩擦系数0.500.20
    刚度比1.451.25
    平行胶结参数初始间隙容差/×10−41.02.0
    半径系数1.001.00
    等效模量/GPa6.2825
    刚度比1.451.25
    力矩贡献系数1.001.00
    抗拉强度平均值/MPa16.533
    抗拉强度标准差/MPa4.1258.25
    内聚力平均值/MPa16165
    内聚力标准差/MPa441.25
    摩擦角/(°)30.0025.00
    下载: 导出CSV
  • [1] 王梦恕. 中国盾构和掘进机隧道技术现状, 存在的问题及发展思路[J]. 隧道建设,2014,34(3): 179-187.

    WANG Mengshu. Tunneling by TBM/shield in China: state-of-art, problems and proposals[J]. Tunnel Construction, 2014, 34(3): 179-187.
    [2] LABRA C, ROJEK J, OÑATE E. Discrete/finite element modelling of rock cutting with a TBM disc cutter[J]. Rock Mechanics and Rock Engineering, 2017, 50(3): 621-638. doi: 10.1007/s00603-016-1133-7
    [3] CHEN L H, LABUZ J F. Indentation of rock by wedge-shaped tools[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(7): 1023-1033. doi: 10.1016/j.ijrmms.2006.03.005
    [4] MA H S, YIN L J, JI H G. Numerical study of the effect of confining stress on rock fragmentation by TBM cutters[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(6): 1021-1033. doi: 10.1016/j.ijrmms.2011.05.002
    [5] LIU J, CAO P, LI K H. A study on isotropic rock breaking with TBM cutters under different confining stresses[J]. Geotechnical and Geological Engineering, 2015, 33(6): 1379-1394. doi: 10.1007/s10706-015-9907-3
    [6] WU Z J, ZHANG P L, FAN L F, et al. Numerical study of the effect of confining pressure on the rock breakage efficiency and fragment size distribution of a TBM cutter using a coupled FEM-DEM method[J]. Tunnelling and Underground Space Technology, 2019, 88: 260-275. doi: 10.1016/j.tust.2019.03.012
    [7] GONG Q M, ZHAO J, JIAO Y Y. Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters[J]. Tunnelling and Underground Space Technology, 2005, 20(2): 183-191. doi: 10.1016/j.tust.2004.08.006
    [8] BEJARI H, KHADEMI HAMIDI J. Simultaneous effects of joint spacing and orientation on TBM cutting efficiency in jointed rock masses[J]. Rock Mechanics and Rock Engineering, 2013, 46(4): 897-907. doi: 10.1007/s00603-012-0314-2
    [9] 马洪素,纪洪广. 节理倾向对TBM滚刀破岩模式及掘进速率影响的试验研究[J]. 岩石力学与工程学报,2011,30(1): 155-163.

    MA Hongsu, JI Hongguang. Experimental study of the effect of joint orientation on fragmentation modes and penetration rate under tbm disc cutters[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 155-163.
    [10] 苏利军,孙金山,卢文波. 基于颗粒流模型的TBM滚刀破岩过程数值模拟研究[J]. 岩土力学,2009,30(9): 2823-2829. doi: 10.3969/j.issn.1000-7598.2009.09.049

    SU Lijun, SUN Jinshan, LU Wenbo. Research on numerical simulation of rock fragmentation by TBM cutters using particle flow method[J]. Rock and Soil Mechanics, 2009, 30(9): 2823-2829. doi: 10.3969/j.issn.1000-7598.2009.09.049
    [11] 夏毅敏,张旭辉,谭青,等. 不同围压下刀宽对滚刀破岩特性的影响规律[J]. 应用基础与工程科学学报,2017,25(3): 636-645. doi: 10.16058/j.issn.1005-0930.2017.03.019

    XIA Yimin, ZHANG Xuhui, TAN Qing, et al. Influence of rock breaking characteristics with disc cutter width under different confining pressure[J]. Journal of Basic Science and Engineering, 2017, 25(3): 636-645. doi: 10.16058/j.issn.1005-0930.2017.03.019
    [12] COOK N G W, HOOD M, TSAI F. Observations of crack growth in hard rock loaded by an indenter[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1984, 21(2): 97-107.
    [13] CHANG S H, CHOI S W, BAE G J, et al. Performance prediction of TBM disc cutting on granitic rock by the linear cutting test[J]. Tunnelling and Underground Space Technology, 2006, 21(3/4): 271.
    [14] 龚秋明,何冠文,赵晓豹,等. 掘进机刀盘滚刀间距对北山花岗岩破岩效率的影响实验研究[J]. 岩土工程学报,2015,37(1): 54-60. doi: 10.11779/CJGE201501005

    GONG Qiuming, HE Guanwen, ZHAO Xiaobao, et al. Influence of different cutter spacings on rock fragmentation efficiency of Beishan granite by TBM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 54-60. doi: 10.11779/CJGE201501005
    [15] 张魁,夏毅敏,徐孜军. 不同围压及切削顺序对TBM刀具破岩机理的影响[J]. 土木工程学报,2011,44(9): 100-106. doi: 10.15951/j.tmgcxb.2011.09.008

    ZHANG Kui, XIA Yimin, XU Zijun. Effects of confining pressure and cutting sequence on the rock-breaking mechanism by TBM cutter[J]. China Civil Engineering Journal, 2011, 44(9): 100-106. doi: 10.15951/j.tmgcxb.2011.09.008
    [16] 谭青,徐孜军,夏毅敏,等. 2种切削顺序下TBM刀具破岩机理的数值研究[J]. 中南大学学报(自然科学版),2012,43(3): 940-946.

    TAN Qing, XU Zijun, XIA Yimin, et al. Numerical study on mode of breaking rock by TBM cutter in two cutting orders[J]. Journal of Central South University (Science and Technology), 2012, 43(3): 940-946.
    [17] ROXBOROUGH F F, PHILLIPS H R. Rock excavation by disc cutter[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1975, 12(12): 361-366.
    [18] JOHNSON K L. Contact mechanics[M]. United Kingdom: Cambridge University Press, 1985: 90-104.
    [19] 崔伟勤,赵自强,张耀光,等. 牵引模式下球环点接触高速弹流润滑行为机理分析[J]. 摩擦学学报,2018,38(6): 619-625. doi: 10.16078/j.tribology.2018055

    CUI Weiqin, ZHAO Ziqiang, ZHANG Yaoguang, et al. Analysis for mechanism of EHL behavior at high speeds in ball-on-ring contacts in tractive rolling mode[J]. Tribology, 2018, 38(6): 619-625. doi: 10.16078/j.tribology.2018055
    [20] 许迪初,汪久根. 粗糙表面的弹塑性接触研究[J]. 摩擦学学报,2016,36(3): 371-379. doi: 10.16078/j.tribology.2016.03.015

    XU Dichu, WANG Jiugen. On deterministic elastoplastic contact for rough surfaces[J]. Tribology, 2016, 36(3): 371-379. doi: 10.16078/j.tribology.2016.03.015
    [21] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. doi: 10.1016/j.ijrmms.2004.09.011
    [22] MOON T, OH J. A study of optimal rock-cutting conditions for hard rock TBM using the discrete element method[J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 837-849.
    [23] ZHANG Z Q, ZHANG K J, DONG W J, et al. Study of rock-cutting process by disc cutters in mixed ground based on three-dimensional particle flow model[J]. Rock Mechanics and Rock Engineering, 2020, 53(8): 3485-3506. doi: 10.1007/s00603-020-02118-y
    [24] 彭琦. 围压对TBM滚刀破岩影响机制研究[J]. 岩石力学与工程学报,2014,33(增1): 2743-2749. doi: 10.13722/j.cnki.jrme.2014.s1.022

    PENG Qi. Research on influence mechanism of confining pressure on rock breakage by tbm cutters[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2743-2749. doi: 10.13722/j.cnki.jrme.2014.s1.022
    [25] 谭青,易念恩,夏毅敏,等. TBM滚刀破岩动态特性与最优刀间距研究[J]. 岩石力学与工程学报,2012,31(12): 2453-2464. doi: 10.3969/j.issn.1000-6915.2012.12.009

    TAN Qing, YI Nianen, XIA Yimin, et al. Research on rock dynamic fragmentation characteristics by tbm cutters and cutter spacing optimization[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2453-2464. doi: 10.3969/j.issn.1000-6915.2012.12.009
    [26] INNAURATO N, OGGERI C, ORESTE P P, et al. Experimental and numerical studies on rock breaking with TBM tools under high stress confinement[J]. Rock Mechanics and Rock Engineering, 2006, 40(5): 429-451.
    [27] 李刚,朱立达,杨建宇,等. 基于CSM模型的TBM滚刀的计算力学模型与求解[J]. 矿山机械,2012,40(4): 8-11. doi: 10.16816/j.cnki.ksjx.2012.04.003

    LI Gang, ZHU Lida, YANG Jianyu, et al. Computational mechanics model for TBM cutters and solution based on CSM model[J]. Mining & Processing Equipment, 2012, 40(4): 8-11. doi: 10.16816/j.cnki.ksjx.2012.04.003
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  474
  • HTML全文浏览量:  137
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 修回日期:  2021-08-26
  • 网络出版日期:  2022-12-10
  • 刊出日期:  2022-07-01

目录

    /

    返回文章
    返回