• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

不同岩石和围压下刃形对滚刀破岩性能的影响

张蒙祺 王一博 章龙管 段文军 苏叶茂 莫继良 周仲荣

付稳超, 齐洪峰, 戴朝华, 李密, 刘正杰, 陈维荣. 有轨电车燃料电池混合动力多目标匹配优化[J]. 西南交通大学学报, 2020, 55(3): 604-611. doi: 10.3969/j.issn.0258-2724.20180370
引用本文: 张蒙祺, 王一博, 章龙管, 段文军, 苏叶茂, 莫继良, 周仲荣. 不同岩石和围压下刃形对滚刀破岩性能的影响[J]. 西南交通大学学报, 2023, 58(2): 332-339. doi: 10.3969/j.issn.0258-2724.20210171
FU Wenchao, QI Hongfeng, DAI Chaohua, LI Mi, LIU Zhengjie, CHEN Weirong. Multi-objective Matching Optimization for Hybrid Fuel-Cell Power System in Trams[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 604-611. doi: 10.3969/j.issn.0258-2724.20180370
Citation: ZHANG Mengqi, WANG Yibo, ZHANG Longguan, DUAN Wenjun, SU Yemao, MO Jiliang, ZHOU Zhongrong. Effects of TBM Cutter Profile on Rock Fragmentation Under Different Rock Type and Confining Pressure Conditions[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 332-339. doi: 10.3969/j.issn.0258-2724.20210171

不同岩石和围压下刃形对滚刀破岩性能的影响

doi: 10.3969/j.issn.0258-2724.20210171
基金项目: 国家自然科学基金(52005419);四川省科技重点研发项目(21ZDYF3658)
详细信息
    作者简介:

    张蒙祺(1989—),男,助理研究员,博士,研究方向为接触力学与摩擦学,E-mail:mzhang@swjtu.edu.cn

    通讯作者:

    莫继良(1982—),男,研究员,博士,研究方向为摩擦学与动力学,E-mail:jlmo@swjtu.cn

  • 中图分类号: TH122

Effects of TBM Cutter Profile on Rock Fragmentation Under Different Rock Type and Confining Pressure Conditions

  • 摘要:

    滚刀位于全断面隧道掘进机(TBM)最前端,与岩石直接发生接触,是执行破岩掘进的关键零部件. 研究TBM滚刀截面轮廓(刃形)对其破岩性能的影响机理和规律,对指导工程实际中滚刀选型与设计、提高TBM掘进效率具有重要意义. 首先建立二维颗粒流离散元模型,针对工程中最常用的平头滚刀和圆弧滚刀,选取两种强度不同的岩石并对其中一种施加固定10 MPa围压;然后,开展滚刀破岩仿真,通过分析比能、破岩体积、刀具载荷、裂纹数量等结果,对滚刀刃形与岩石破碎的关联性进行研究;最后,通过缩比滚刀破岩实验验证数值分析所得结论的正确性. 分析结果表明:滚刀刃形对其破岩性能影响显著,在本文所涉及参数范围内,对于多数岩石强度与围压组合,圆弧滚刀比能均低于平头滚刀比能,平均降低19.8%;圆弧滚刀破岩力比平顶滚刀破岩力平均低32.6%,表明破岩过程中圆弧滚刀做功较少,而二者产生的岩石碎片总体积相差不大(平均差值7%),则圆弧滚刀破除单位体积岩石所消耗的能量更少. 综上所述,两种常用滚刀刃形相比,在岩石强度与围压较高的地层中可考虑优先选用圆弧滚刀.

     

  • 图 1  颗粒间平行黏结示意

    Figure 1.  Schematic of particle connection

    图 2  滚刀破岩颗粒流模型及滚刀刃形

    Figure 2.  Schematics of the particle flow model for rock cutting and the cutter profiles

    图 3  不同刀间距下岩石内裂纹分布

    Figure 3.  Crack distributions under different cutter spaces

    图 4  不同刀间距下滚刀破岩仿真结果

    Figure 4.  Rock cutting results under different cutter space

    图 5  缩比滚刀破岩实验

    Figure 5.  Setup of the reduced-scale rock cutting experiment

    图 6  岩石试样典型破坏

    Figure 6.  Fragmentation of rock samples

    图 7  滚刀总法向力变化规律

    Figure 7.  Total normal force during rock cutting

    图 8  岩石碎片总体积的变化

    Figure 8.  Changes of the total volume of rock fragments

    表  1  岩石宏观力学属性

    Table  1.   Macroscopic mechanical properties of rocks

    岩石类型杨氏模量/
    GPa
    泊松比抗压强度/
    MPa
    抗拉强度/
    MPa
    玄武岩9.660.2128.406.60
    花岗岩41.30.24103.5914.73
    下载: 导出CSV

    表  2  颗粒流模型细观参数

    Table  2.   Microscopic parameters for the particle flow model

    参数类别参数名称玄武岩花岗岩
    模型通用参数颗粒直径下限/mm11
    颗粒直径上限/mm1.661.66
    颗粒密度/(kg·m−326502476
    阻尼系数0.70.7
    线性接触参数等效模量/GPa6.2825
    摩擦系数0.500.20
    刚度比1.451.25
    平行胶结参数初始间隙容差/×10−41.02.0
    半径系数1.001.00
    等效模量/GPa6.2825
    刚度比1.451.25
    力矩贡献系数1.001.00
    抗拉强度平均值/MPa16.533
    抗拉强度标准差/MPa4.1258.25
    内聚力平均值/MPa16165
    内聚力标准差/MPa441.25
    摩擦角/(°)30.0025.00
    下载: 导出CSV
  • [1] 王梦恕. 中国盾构和掘进机隧道技术现状, 存在的问题及发展思路[J]. 隧道建设,2014,34(3): 179-187.

    WANG Mengshu. Tunneling by TBM/shield in China: state-of-art, problems and proposals[J]. Tunnel Construction, 2014, 34(3): 179-187.
    [2] LABRA C, ROJEK J, OÑATE E. Discrete/finite element modelling of rock cutting with a TBM disc cutter[J]. Rock Mechanics and Rock Engineering, 2017, 50(3): 621-638. doi: 10.1007/s00603-016-1133-7
    [3] CHEN L H, LABUZ J F. Indentation of rock by wedge-shaped tools[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(7): 1023-1033. doi: 10.1016/j.ijrmms.2006.03.005
    [4] MA H S, YIN L J, JI H G. Numerical study of the effect of confining stress on rock fragmentation by TBM cutters[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(6): 1021-1033. doi: 10.1016/j.ijrmms.2011.05.002
    [5] LIU J, CAO P, LI K H. A study on isotropic rock breaking with TBM cutters under different confining stresses[J]. Geotechnical and Geological Engineering, 2015, 33(6): 1379-1394. doi: 10.1007/s10706-015-9907-3
    [6] WU Z J, ZHANG P L, FAN L F, et al. Numerical study of the effect of confining pressure on the rock breakage efficiency and fragment size distribution of a TBM cutter using a coupled FEM-DEM method[J]. Tunnelling and Underground Space Technology, 2019, 88: 260-275. doi: 10.1016/j.tust.2019.03.012
    [7] GONG Q M, ZHAO J, JIAO Y Y. Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters[J]. Tunnelling and Underground Space Technology, 2005, 20(2): 183-191. doi: 10.1016/j.tust.2004.08.006
    [8] BEJARI H, KHADEMI HAMIDI J. Simultaneous effects of joint spacing and orientation on TBM cutting efficiency in jointed rock masses[J]. Rock Mechanics and Rock Engineering, 2013, 46(4): 897-907. doi: 10.1007/s00603-012-0314-2
    [9] 马洪素,纪洪广. 节理倾向对TBM滚刀破岩模式及掘进速率影响的试验研究[J]. 岩石力学与工程学报,2011,30(1): 155-163.

    MA Hongsu, JI Hongguang. Experimental study of the effect of joint orientation on fragmentation modes and penetration rate under tbm disc cutters[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 155-163.
    [10] 苏利军,孙金山,卢文波. 基于颗粒流模型的TBM滚刀破岩过程数值模拟研究[J]. 岩土力学,2009,30(9): 2823-2829. doi: 10.3969/j.issn.1000-7598.2009.09.049

    SU Lijun, SUN Jinshan, LU Wenbo. Research on numerical simulation of rock fragmentation by TBM cutters using particle flow method[J]. Rock and Soil Mechanics, 2009, 30(9): 2823-2829. doi: 10.3969/j.issn.1000-7598.2009.09.049
    [11] 夏毅敏,张旭辉,谭青,等. 不同围压下刀宽对滚刀破岩特性的影响规律[J]. 应用基础与工程科学学报,2017,25(3): 636-645. doi: 10.16058/j.issn.1005-0930.2017.03.019

    XIA Yimin, ZHANG Xuhui, TAN Qing, et al. Influence of rock breaking characteristics with disc cutter width under different confining pressure[J]. Journal of Basic Science and Engineering, 2017, 25(3): 636-645. doi: 10.16058/j.issn.1005-0930.2017.03.019
    [12] COOK N G W, HOOD M, TSAI F. Observations of crack growth in hard rock loaded by an indenter[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1984, 21(2): 97-107.
    [13] CHANG S H, CHOI S W, BAE G J, et al. Performance prediction of TBM disc cutting on granitic rock by the linear cutting test[J]. Tunnelling and Underground Space Technology, 2006, 21(3/4): 271.
    [14] 龚秋明,何冠文,赵晓豹,等. 掘进机刀盘滚刀间距对北山花岗岩破岩效率的影响实验研究[J]. 岩土工程学报,2015,37(1): 54-60. doi: 10.11779/CJGE201501005

    GONG Qiuming, HE Guanwen, ZHAO Xiaobao, et al. Influence of different cutter spacings on rock fragmentation efficiency of Beishan granite by TBM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 54-60. doi: 10.11779/CJGE201501005
    [15] 张魁,夏毅敏,徐孜军. 不同围压及切削顺序对TBM刀具破岩机理的影响[J]. 土木工程学报,2011,44(9): 100-106. doi: 10.15951/j.tmgcxb.2011.09.008

    ZHANG Kui, XIA Yimin, XU Zijun. Effects of confining pressure and cutting sequence on the rock-breaking mechanism by TBM cutter[J]. China Civil Engineering Journal, 2011, 44(9): 100-106. doi: 10.15951/j.tmgcxb.2011.09.008
    [16] 谭青,徐孜军,夏毅敏,等. 2种切削顺序下TBM刀具破岩机理的数值研究[J]. 中南大学学报(自然科学版),2012,43(3): 940-946.

    TAN Qing, XU Zijun, XIA Yimin, et al. Numerical study on mode of breaking rock by TBM cutter in two cutting orders[J]. Journal of Central South University (Science and Technology), 2012, 43(3): 940-946.
    [17] ROXBOROUGH F F, PHILLIPS H R. Rock excavation by disc cutter[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1975, 12(12): 361-366.
    [18] JOHNSON K L. Contact mechanics[M]. United Kingdom: Cambridge University Press, 1985: 90-104.
    [19] 崔伟勤,赵自强,张耀光,等. 牵引模式下球环点接触高速弹流润滑行为机理分析[J]. 摩擦学学报,2018,38(6): 619-625. doi: 10.16078/j.tribology.2018055

    CUI Weiqin, ZHAO Ziqiang, ZHANG Yaoguang, et al. Analysis for mechanism of EHL behavior at high speeds in ball-on-ring contacts in tractive rolling mode[J]. Tribology, 2018, 38(6): 619-625. doi: 10.16078/j.tribology.2018055
    [20] 许迪初,汪久根. 粗糙表面的弹塑性接触研究[J]. 摩擦学学报,2016,36(3): 371-379. doi: 10.16078/j.tribology.2016.03.015

    XU Dichu, WANG Jiugen. On deterministic elastoplastic contact for rough surfaces[J]. Tribology, 2016, 36(3): 371-379. doi: 10.16078/j.tribology.2016.03.015
    [21] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. doi: 10.1016/j.ijrmms.2004.09.011
    [22] MOON T, OH J. A study of optimal rock-cutting conditions for hard rock TBM using the discrete element method[J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 837-849.
    [23] ZHANG Z Q, ZHANG K J, DONG W J, et al. Study of rock-cutting process by disc cutters in mixed ground based on three-dimensional particle flow model[J]. Rock Mechanics and Rock Engineering, 2020, 53(8): 3485-3506. doi: 10.1007/s00603-020-02118-y
    [24] 彭琦. 围压对TBM滚刀破岩影响机制研究[J]. 岩石力学与工程学报,2014,33(增1): 2743-2749. doi: 10.13722/j.cnki.jrme.2014.s1.022

    PENG Qi. Research on influence mechanism of confining pressure on rock breakage by tbm cutters[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2743-2749. doi: 10.13722/j.cnki.jrme.2014.s1.022
    [25] 谭青,易念恩,夏毅敏,等. TBM滚刀破岩动态特性与最优刀间距研究[J]. 岩石力学与工程学报,2012,31(12): 2453-2464. doi: 10.3969/j.issn.1000-6915.2012.12.009

    TAN Qing, YI Nianen, XIA Yimin, et al. Research on rock dynamic fragmentation characteristics by tbm cutters and cutter spacing optimization[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2453-2464. doi: 10.3969/j.issn.1000-6915.2012.12.009
    [26] INNAURATO N, OGGERI C, ORESTE P P, et al. Experimental and numerical studies on rock breaking with TBM tools under high stress confinement[J]. Rock Mechanics and Rock Engineering, 2006, 40(5): 429-451.
    [27] 李刚,朱立达,杨建宇,等. 基于CSM模型的TBM滚刀的计算力学模型与求解[J]. 矿山机械,2012,40(4): 8-11. doi: 10.16816/j.cnki.ksjx.2012.04.003

    LI Gang, ZHU Lida, YANG Jianyu, et al. Computational mechanics model for TBM cutters and solution based on CSM model[J]. Mining & Processing Equipment, 2012, 40(4): 8-11. doi: 10.16816/j.cnki.ksjx.2012.04.003
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  594
  • HTML全文浏览量:  180
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 修回日期:  2021-08-26
  • 网络出版日期:  2022-12-10
  • 刊出日期:  2022-07-01

目录

    /

    返回文章
    返回