• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于边权重图神经网络的一阶逻辑前提选择

刘清华 徐扬 吴贯锋 李瑞杰

刘清华, 徐扬, 吴贯锋, 李瑞杰. 基于边权重图神经网络的一阶逻辑前提选择[J]. 西南交通大学学报, 2022, 57(6): 1368-1375. doi: 10.3969/j.issn.0258-2724.20210134
引用本文: 刘清华, 徐扬, 吴贯锋, 李瑞杰. 基于边权重图神经网络的一阶逻辑前提选择[J]. 西南交通大学学报, 2022, 57(6): 1368-1375. doi: 10.3969/j.issn.0258-2724.20210134
LIU Qinghua, XU Yang, WU Guanfeng, LI Ruijie. Edge-Weighted-Based Graph Neural Network for First-Order Premise Selection[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1368-1375. doi: 10.3969/j.issn.0258-2724.20210134
Citation: LIU Qinghua, XU Yang, WU Guanfeng, LI Ruijie. Edge-Weighted-Based Graph Neural Network for First-Order Premise Selection[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1368-1375. doi: 10.3969/j.issn.0258-2724.20210134

基于边权重图神经网络的一阶逻辑前提选择

doi: 10.3969/j.issn.0258-2724.20210134
基金项目: 中央高校基本科研业务费专项资金(2682020CX59,2682021CX057);教育部人文社会科学研究项目(20XJCZH016,19YJCZH048);四川省科技计划(2020YJ0270,2020YFH0026)
详细信息
    作者简介:

    刘清华(1992—),女,博士研究生,研究方向自动推理、智能信息处理,E-mail:qhliu@my.swjtu.edu.cn

    通讯作者:

    徐扬(1956—),男,教授,博士,研究方向为逻辑代数、不确定性推理和自动推理,E-mail:xuyang@home.swjtu.edu.cn

  • 中图分类号: TP391

Edge-Weighted-Based Graph Neural Network for First-Order Premise Selection

  • 摘要:

    为提高自动定理证明器在大规模问题中证明问题的能力,前提选择任务应运而生. 由于公式图的有向性,主流的图神经网络框架只能单向地对节点进行更新,且无法编码公式图中子节点间的顺序. 针对以上问题,提出了带有边类型的双向公式图表示方法,并提出了一种基于边权重的图神经网络(edge-weight-based graph neural network,EW-GNN)模型用于编码一阶逻辑公式. 该模型首先利用相连节点的信息来更新对应边类型的特征表示,随后利用更新后的边类型特征计算邻接节点对中心节点的权重,最后利用邻接节点的信息双向地对中心节点进行更新. 实验比较分析表明:基于边权重的图神经网络模型在前提选择任务中表现得更加优越,其在相同的测试集上比当前最优模型的分类准确率高了约1%.

     

  • 图 1  一阶逻辑公式的双向图表示

    Figure 1.  Bidirectional graph representation of first-order logical formula

    图 2  基于图神经网络的前提选择模型

    Figure 2.  Premise selection model based ongraph neural network

    表  1  MPTP2078问题库描述

    Table  1.   Description of MPTP2078 benchmark

    名称公式结论最小前提最大前提平均前提
    数量4 5642 078104 5631 876
    下载: 导出CSV

    表  2  数据集划分

    Table  2.   Division of datasets

    样本训练集验证集测试集
    2766334173432
    2755634853471
    总样本5521969026903
    下载: 导出CSV

    表  3  参数设置

    Table  3.   Setting of parameters

    参数设置
    节点向量维度$ {d}_{{h}_{v}} $64
    边向量维度$ {d}_{{h}_{e}} $32
    迭代次数 K/次1
    学习率0.0010
    学习率衰减系数0.1
    学习率衰减步长50
    轮次/轮100
    权重衰减0.0001
    批量大小/个8
    下载: 导出CSV

    表  4  数据集上的对比实验结果

    Table  4.   Comparision of experimental results on datasets

    方法准确率精确率召回率F1
    GCN[18]0.86250.86690.85470.8608
    GAT[19]0.858 00.862 90.851 80.857 3
    GraphSAGE[27]0.86150.86860.85010.8592
    SGC[28]0.85570.85790.85060.8543
    Chebyshev[29]0.86080.86600.85180.8588
    EW-GNN0.87240.87010.86860.8641
    下载: 导出CSV
  • [1] KERN C, GREENSTREET M R. Formal verification in hardware design: a survey[J]. ACM Transactions on Design Automation of Electronic Systems (TODAES), 1999, 4(2): 123-193. doi: 10.1145/307988.307989
    [2] KLEIN G, ELPHINSTONE K, HEISER G, et al. seL4: Formal verification of an OS kernel[C]//Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles. Big Sky: ACM, 2009: 207-220.
    [3] LEROY X. Formal verification of a realistic compiler[J]. Communications of the ACM, 2009, 52(7): 107-115. doi: 10.1145/1538788.1538814
    [4] KOVÁCS L, VORONKO A. First-order theorem proving and vampire[C]//25th International Conference on Computer Aided Verification. Saint Petersburg: [s.n.], 2013: 1-35.
    [5] SCHULZ S. E – a brainiac theorem prover[J]. Ai Communications, 2002, 15(2/3): 111-126.
    [6] SUTCLIFFE G. The TPTP problem library and associated infrastructure[J]. Journal of Automated Reasoning, 2017, 59(4): 483-502. doi: 10.1007/s10817-017-9407-7
    [7] KALISZYK C, URBAN J. MizAR 40 for mizar 40[J]. Journal of Automated Reasoning, 2015, 55(3): 245-256. doi: 10.1007/s10817-015-9330-8
    [8] MCCUNE W W. Otter 3.0 reference manual and guide[R]. Chicago: Argonne National Lab., 1994.
    [9] MENG J, PAULSON L C. Lightweight relevance filtering for machine-generated resolution problems[J]. Journal of Applied Logic, 2009, 7(1): 41-57. doi: 10.1016/j.jal.2007.07.004
    [10] HODER K, VORONKOV A. Sine qua non for large theory reasoning[C]//23th International Conference on Automated Deduction. Wroclaw: [s.n.], 2011: 299-314.
    [11] ALAMA J, HESKES T, KÜHLWEIN D, et al. Premise selection for mathematics by corpus analysis and kernel methods[J]. Journal of Automated Reasoning, 2014, 52(2): 191-213. doi: 10.1007/s10817-013-9286-5
    [12] KALISZYK C, URBAN J, VYSKOČIL J. Efficient semantic features for automated reasoning over large theories[C]//Proceedings of the 24th International Conference on Artificial Intelligence. [S.l.]: AAAI Press, 2015: 3084-3090.
    [13] PIOTROWSKI B, URBAN J. ATPboost: learning premise selection in binary setting with ATP feedback[C]//International Joint Conference on Automated Reasoning. Cham: Springer, 2018: 566-574.
    [14] ALEMI A A, CHOLLET F, EEN N, et al. DeepMath-deep sequence models for premise selection[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: Curran Associates Inc., 2016: 2243-2251.
    [15] WANG M, TANG Y, WANG J, et al. Premise selection for theorem proving by deep graph embedding[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017: 2783-2793.
    [16] CROUSE M, ABDELAZIZ I, CORNELIO C, et al. Improving graph neural network representations of logical formulae with subgraph pooling[EB/OL]. (2019-11-15). https://arxiv.org/abs/1911.06904.
    [17] PALIWAL A, LOOS S, RABE M, et al. Graph representations for higher-order logic and theorem proving[C]//34th Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 2967-2974.
    [18] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[DB/OL]. (2016-09-09). https://doi.org/10.48550/arXiv.1609.02907.
    [19] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[DB/OL]. (2017-10-30). https://doi.org/10.48550/arXiv.1710.10903.
    [20] ROBINSON A J, VORONKOV A. Handbook of automated reasoning[M]. [S.l.]: Elsevier, 2001.
    [21] Rudnicki P. An overview of the Mizar project[C]//Proceedings of the 1992 Workshop on Types for Proofs and Programs. [S.l.]: Chalmers University of Technology, 1992: 311-330.
    [22] JAKUBŮVJ, URBAN J. ENIGMA: efficient learning-based inference guiding machine[C]//International Conference on Intelligent Computer Mathematics. Cham: Springer, 2017: 292-302.
    [23] COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.
    [24] PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library[DB/OL]. (2019-12-03). https://arxiv.org/abs/1912.01703
    [25] FEY M, LENSSEN J E. Fast graph representation learning with PyTorch geometric[DB/OL]. (2019-03-06). https://arxiv.org/abs/1903.02428
    [26] KINGMA D P, BA J. Adam: a method for stochastic optimization[DB/OL]. (2014-12-22). https://arxiv.org/abs/1412.6980.
    [27] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: [s.n.], 2017: 1025-1035.
    [28] WU F L, SOUZA A H, ZHANG T Y, et al. Simplifying graph convolutional networks[C]// International Conference on Machine Learning. [S.l.]: PMLR, 2019: 6861-6871.
    [29] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: [s.n.], 2016: 3844-3852.
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  399
  • HTML全文浏览量:  230
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-23
  • 修回日期:  2021-07-12
  • 网络出版日期:  2022-08-24
  • 刊出日期:  2021-11-17

目录

    /

    返回文章
    返回