• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑打磨量的重载钢轨打磨廓形优化设计

吴磊 康彦兵 董勇 张华鹏

谢明志, 杨永清, 卜一之, 赵灿晖, 张克跃, 王学伟. 千米级混合梁斜拉桥双目标控制施工监控体系[J]. 西南交通大学学报, 2018, 53(2): 244-252, 321. doi: 10.3969/j.issn.0258-2724.2018.02.004
引用本文: 吴磊, 康彦兵, 董勇, 张华鹏. 考虑打磨量的重载钢轨打磨廓形优化设计[J]. 西南交通大学学报, 2022, 57(4): 805-812. doi: 10.3969/j.issn.0258-2724.20210120
XIE Mingzhi, YANG Yongqing, BU Yizhi, ZHAO Canhui, ZHANG Keyue, WANG Xuewei. Construction Control System for Thousand-Meter-Scale Hybrid Girder Cable-Stayed Bridge Based on Double Target Control[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 244-252, 321. doi: 10.3969/j.issn.0258-2724.2018.02.004
Citation: WU Lei, KANG Yanbing, DONG Yong, ZHANG Huapeng. Optimal Design of Heavy-Haul Rail Grinding Profile Considering Grinding Amount[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 805-812. doi: 10.3969/j.issn.0258-2724.20210120

考虑打磨量的重载钢轨打磨廓形优化设计

doi: 10.3969/j.issn.0258-2724.20210120
基金项目: 国家自然科学基金(51605395);四川省科技计划(2020YJ0034, 2020JDTD0012, 2020YFQ0024, 2019YJ0209)
详细信息
    作者简介:

    吴磊(1981—),男,讲师,博士,研究方向为轮轨关系,E-mail:wuleitpl@swjtu.edu.cn

  • 中图分类号: V221.3

Optimal Design of Heavy-Haul Rail Grinding Profile Considering Grinding Amount

  • 摘要:

    为在重载钢轨打磨廓形优化设计中最小化钢轨打磨量,建立了打磨量的钢轨廓形对齐及计算方法,设计以轮轨磨耗指数、轮轨接触应力以及钢轨打磨量为优化子目标的综合优化评价模型,并对不同优化策略的优化结果进行了分析. 首先,通过矩阵旋转变换、曲线拟合及样条插值等理论建立钢轨廓形自动对齐算法,并计算目标廓形打磨量;其次,考虑轮轨磨耗指数、接触应力以及钢轨打磨量,建立综合优化目标函数,采用遗传算法并联合车辆轨道动力学仿真模型求解优化钢轨打磨廓形;最后,运用所建立的钢轨廓形优化设计模型计算分析不同优化策略的设计结果. 研究结果表明:同时考虑轮轨磨耗、轮轨接触应力和钢轨打磨量,优化后曲线外、内轨廓形平均磨耗指数相比初始廓形下降68.9%,内轨接触应力下降39.1%,打磨量下降21.8%,优化效果最佳;只考虑轮轨磨耗和接触应力时,优化后曲线外轨廓形磨耗指数和内轨接触应力下降较为明显,但打磨量下降速率相对较慢,仅为11.3%;只考虑打磨量时,优化后钢轨廓形打磨量下降最快,为24.4%,但轮轨接触应力显著变大.

     

  • 图 1  钢轨廓形几何型面

    Figure 1.  Geometric profile of rail

    图 2  实测钢轨廓形旋转预处理

    Figure 2.  Pre-processing of measured rail profile rotation

    图 3  实测廓形与目标廓形内侧直线段平行示意

    Figure 3.  Parallelling of the straight line inside between the measured profile and the target profile

    图 4  钢轨廓形横向对齐流程

    Figure 4.  Flowchart for horizontal alignment of rail profile

    图 5  实测廓形与目标廓形横向对齐示意

    Figure 5.  Horizontal alignment between the measured profile and the target profile

    图 6  实测廓形与目标廓形垂向对齐示意

    Figure 6.  Vertical alignment between the measured profile and the target profile

    图 7  轮对磨耗指数迭代演化过程

    Figure 7.  Iterative evolution process of wheelset wear index

    图 8  一位轮对接触应力指数迭代演化过程

    Figure 8.  Iterative evolution process of the first wheelset contact stress index

    图 9  钢轨打磨量指数迭代演化过程

    Figure 9.  Iterative evolution process of grinding amount index

    表  1  优化策略

    Table  1.   Optimization strategies

    工况磨耗权重系数应力权重系数打磨量权重系数
    1 0.0833 0.1095 0.8072
    2 0.4585 0.5515 0
    3 0 0 1
    下载: 导出CSV

    表  2  外轨磨耗和内轨接触应力

    Table  2.   High rail wear and low rail contact stress

    工况外轨磨耗指数/N内轨应力/MPa
    实测廓形 12482.01294.0
    1105.1770.5
    2133.8868.3
    3109.82201.0
    下载: 导出CSV
  • [1] 刘启跃,王文健,周仲荣. 高速与重载铁路钢轨损伤及预防技术差异研究[J]. 润滑与密封,2007,32(11): 11-14,68. doi: 10.3969/j.issn.0254-0150.2007.11.004

    LIU Qiyue, WANG Wenjian, ZHOU Zhongrong. An investigation on difference of rail damage and preventive technique of high-speed and heavy-haul railway[J]. Lubrication Engineering, 2007, 32(11): 11-14,68. doi: 10.3969/j.issn.0254-0150.2007.11.004
    [2] GERLICI J, LACK T. Contact geometry influence on the rail/wheel surface stress distribution[J]. Procedia Engineering, 2010, 2(1): 2249-2257.
    [3] 董勇,康彦兵,张华鹏,等. 地铁线路钢轨波磨对车辆振动特性的影响[J]. 机械,2021,48(10): 22-29. doi: 10.3969/j.issn.1006-0316.2021.10.004

    DONG Yong, KANG Yanbing, ZHANG Huapeng, et al. Effect of rail corrugation in metro line on vibration characteristics of vehicle[J]. Machinery, 2021, 48(10): 22-29. doi: 10.3969/j.issn.1006-0316.2021.10.004
    [4] GRASSIE S, NILSSON P, BJURSTROM K, et al. Alleviation of rolling contact fatigue on Sweden's heavy haul railway[J]. Wear, 2002, 253(1/2): 42-53.
    [5] PERSSON I, NILSSON R, BIK U, et al. Use of a genetic algorithm to improve the rail profile on Stockholm underground[J]. Vehicle System Dynamics, 2010, 48(S1): 89-104.
    [6] CHOI H Y, LEE D H, SONG C Y, et al. Optimization of rail profile to reduce wear on curved track[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(4): 619-625. doi: 10.1007/s12541-013-0083-1
    [7] WANG P, GAO L, XIN T, et al. Study on the numerical optimization of rail profiles for heavy haul railways[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2017, 231(6): 649-665.
    [8] 毛鑫,沈钢. 基于轮径差函数的曲线钢轨打磨廓形设计[J]. 同济大学学报(自然科学版),2018,46(2): 253-259. doi: 10.11908/j.issn.0253-374x.2018.02.017

    MAO Xin, SHEN Gang. Curved rail grinding profile design based on rolling radii difference function[J]. Journal of Tongji University (Natural Science), 2018, 46(2): 253-259. doi: 10.11908/j.issn.0253-374x.2018.02.017
    [9] 郭战伟. 普速铁路钢轨打磨对轮轨接触关系的影响[J]. 中国铁道科学,2020,41(6): 109-116. doi: 10.3969/j.issn.1001-4632.2020.06.12

    GUO Zhanwei. Influence of rail grinding on wheel-rail contact relationship in general speed railway[J]. China Railway Science, 2020, 41(6): 109-116. doi: 10.3969/j.issn.1001-4632.2020.06.12
    [10] 王亮,向伟彬,刘宏达,等. 小半径曲线钢轨非对称打磨目标型面优化[J]. 机械科学与技术,2021,40(6): 949-954.

    WANG Liang, XIANG Weibin, LIU Hongda, et al. Target profile optimization of asymmetrical grinding for rail with sharp-radius curve[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 949-954.
    [11] 肖杰灵,刘学毅. 钢轨非对称廓型的设计方法[J]. 西南交通大学学报,2010,45(3): 361-365. doi: 10.3969/j.issn.0258-2724.2010.03.007

    XIAO Jieling, LIU Xueyi. Design method of rail asymmetric silhouette[J]. Journal of Southwest Jiaotong University, 2010, 45(3): 361-365. doi: 10.3969/j.issn.0258-2724.2010.03.007
    [12] 张金,俞喆,杨超,等. 普速铁路钢轨打磨廓形优化设计及效果评价[J]. 铁道建筑,2020,60(10): 138-141.

    ZHANG Jin, YU Zhe, YANG Chao, et al. Optimization design and effect evaluation of rail grinding profile for conventional speed railway[J]. Railway Engineering, 2020, 60(10): 138-141.
    [13] 余博. 基于面积信息的钢轨打磨方法研究与实现[D]. 武汉: 武汉理工大学, 2018.
    [14] 黄佳乐,桂卫东. 基于MATLAB钢轨廓形法线值计算及现场应用[J]. 铁路技术创新,2020(2): 72-78.
    [15] 唐彦玲,吴磊,董勇,等. 重载铁路曲线钢轨廓形多目标优化设计[J]. 机械,2020,47(12): 1-9.

    TANG Yanling, WU Lei, DONG Yong, et al. Multi-objective optimization design of rail profiles on curve tracks of heavy haul railway[J]. Machinery, 2020, 47(12): 1-9.
    [16] 成棣,胡晓依,刘丰收,等. 基于改进层次分析法的高速列车轮轨型面匹配评价方法及应用[J]. 中国铁道科学,2019,40(3): 80-88. doi: 10.3969/j.issn.1001-4632.2019.03.12

    CHENG Di, HU Xiaoyi, LIU Fengshou, et al. Evaluation method and application of wheel-rail profile matching for high speed train based on improved analytic hierarchy process[J]. China Railway Science, 2019, 40(3): 80-88. doi: 10.3969/j.issn.1001-4632.2019.03.12
    [17] WU L, LIU J Q, DHANASEKAR M, et al. Optimisation of railhead profiles for curved tracks using improved non-uniform rational B-splines and measured profiles[J]. Wear, 2019, 418/419: 123-132. doi: 10.1016/j.wear.2018.11.012
  • 期刊类型引用(15)

    1. 陆粤,王铭,陈嵘,李小珍,王平. 基于行车平稳性的大跨度铁路桥梁成桥线形评价方法研究. 铁道标准设计. 2024(06): 44-51 . 百度学术
    2. 张明金,周远洲,沈孔健,苑仁安,郑清刚. 常泰长江大桥主航道桥桥塔横向偏位及其控制方案研究. 桥梁建设. 2023(01): 1-8 . 百度学术
    3. 黄春阳. 基于监测数据的独塔斜拉桥施工过程受力性能分析. 安徽建筑. 2023(04): 137-138+185 . 百度学术
    4. 苑仁安,张明金,郑清刚,傅战工,喻济昇. 超大跨斜拉桥横桥向恒载非对称力学行为. 西南交通大学学报. 2023(03): 527-534 . 本站查看
    5. 黄学漾. 双塔双索面异形塔柱斜拉桥施工控制关键技术探讨. 福建交通科技. 2023(06): 51-57 . 百度学术
    6. 汪劲丰,杨松伟,亢阳阳,向华伟. 分阶段施工中钢箱梁制造参数的通用计算方法. 浙江大学学报(工学版). 2022(03): 550-557 . 百度学术
    7. 李江刚,石建华,张巨生. 鳊鱼洲长江大桥南汊航道桥施工控制关键技术. 桥梁建设. 2022(04): 8-15 . 百度学术
    8. 李鹏飞,王石磊,魏思聪,李毅,罗吉庆. 大型空间异形钢塔斜拉桥拉索张拉控制. 公路交通科技. 2022(10): 49-58 . 百度学术
    9. 周仁忠,黄灿,郑建新. 福厦高铁泉州湾跨海大桥主桥施工控制关键技术. 桥梁建设. 2022(06): 131-139 . 百度学术
    10. 黄继荣,马牛静,王荣辉,陈广韬. 叠合梁斜拉桥快速施工过程中主梁线形及索力调控精细化分析. 交通世界. 2022(36): 145-148 . 百度学术
    11. 张飞,黄福云,王燕. V型墩刚构桥悬浇施工中应变修正与应力监测. 山东建筑大学学报. 2020(03): 36-41 . 百度学术
    12. 廖贵星,严汝辉,胡辉跃,张燕飞,徐恭义. 武汉青山长江公路大桥中跨钢箱梁施工控制关键技术. 桥梁建设. 2020(S1): 126-132 . 百度学术
    13. 高玉峰,杨永清,蒲黔辉,李晓斌. 桥梁施工监测控制理论及工程应用2019年度研究进展. 土木与环境工程学报(中英文). 2020(05): 98-105 . 百度学术
    14. 董晓兵,余友江. 青海哇加滩黄河特大桥施工控制. 桥梁建设. 2019(04): 96-101 . 百度学术
    15. 梅秀道,卢亦焱. 基于索长的大跨径斜拉桥施工控制计算方法及应用. 桥梁建设. 2019(06): 42-47 . 百度学术

    其他类型引用(12)

  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  187
  • PDF下载量:  35
  • 被引次数: 27
出版历程
  • 收稿日期:  2021-02-03
  • 修回日期:  2022-01-04
  • 刊出日期:  2022-01-14

目录

    /

    返回文章
    返回