Analysis of Aggregate Interaction Based on Configuration Force Fracture Criterion
-
摘要:
为研究沥青混凝土内部裂纹初始构型(如裂纹初始偏转角,空间位置)的改变对裂纹扩展路径以及裂纹扩展方式的影响,以裂尖构型力为断裂准则,通过扩展有限元XFEM建立具有不同初始构型的裂纹模型,模拟裂纹经过单骨料和非对称双骨料的情况;从裂纹扩展路径和裂尖构型力变化等方面分析骨料干涉作用下裂纹初始构型对裂纹扩展的影响. 结果表明:1) 在单骨料干涉作用下,裂尖构型力随骨料与初始裂尖夹角的增大而逐渐增大,表明骨料对裂纹扩展的干涉作用逐渐减弱,当其超过60° 后,骨料对裂纹扩展的干涉作用可忽略不计;2) 在非对称双骨料干涉作用下,随着骨料圆心连线与
x 轴夹角的增大,双骨料对裂纹扩展干涉作用愈加明显,当其大于45° 时,裂尖构型力明显偏小,即骨料对裂纹扩展表现出“止裂”效果;3) 当裂纹初始偏转角发生改变时,单骨料与非对称双骨料对裂纹扩展的干涉作用具有相似性,其裂尖构型力随偏转角增大呈现先增加后减小的趋势;4) 当偏转角为45° 时,裂尖构型力偏大,意味着裂纹趋于非稳定状态,骨料对裂纹扩展的抑制效果较弱,致使骨料对沥青混合料抗裂性能的提高受到一定限制.Abstract:In order to study the influence of the initial crack configuration (such as the initial crack deflection angle and the space position) in asphalt concrete on the change of crack propagation path and growth mode, A crack model with different initial configurations was established by extended finite element XFEM with configuration force at crack tip as fracture criterion to simulate the crack propagation through single aggregate and asymmetric double aggregate. The influence of initial crack configuration on crack propagation was analyzed from the aspects of crack propagation path and crack tip’s configurational force. The results are summarized below: 1) Under single aggregate interference, the crack tip’s configurational force gradually increases with the increase of the angle (the angle between the line connecting the crack tip and the center of the aggregate and the
x -axis), indicating that the interference effect of the aggregate on the crack propagation gradually weakens. When the angle is over 60°, the interference effect of aggregate on crack propagation is negligible; 2) Under the interference of asymmetric double aggregate, as the angle (the angle between the line connecting the center of the aggregate and thex -axis) increases, the aggregate interference effect on crack propagation gradually enhances. When the angle is over 45°, the crack tip’s configurational force is significantly smaller, that is, the aggregate exhibits a “crack arresting” effect on the crack propagation; 3) When the initial crack deflection angle changes, the interference effect of single aggregate and asymmetric duel-aggregate on crack propagation is similar. The crack tip’s configuration force increases first and then decreases with the increase of deflection angle ; 4) When it is equal to 45°, the larger crack tip’s configurational force means that the crack tends to be in an unstable state, and the inhibitory effect of the aggregate on crack propagation is weak; hence, the improvement of the crack resistance of the asphalt concrete by the aggregate is limited. -
表 1 AC-13沥青混凝土级配
Table 1. Gradation of AC-13 Asphalt Concrete
筛孔尺寸/mm 16.000 13.200 9.500 4.750 2.360 1.180 0.600 0.300 0.150 0.075 通过率/% 100.0 97.5 84.0 62.5 42.5 32.0 24.0 15.5 11.0 6.0 表 2 −20 ℃下AC-13级配沥青混凝土材料参数
Table 2. Parameters of AC-13 asphalt concrete at −20 ℃
材料相类 计算参数 数值 骨料 弹性模量 E/GPa 55.5 抗拉强度 σ/MPa 27.60 沥青混合料 抗拉强度 σ/MPa 3.55 断裂能/(J·m−2) 275 表 3 扩展有限元模型设置参数
Table 3. Parameters of extended finite element model
材料类型 参数类型 数值 沥青混合料 宽度 W/mm 30 长度 H/mm 40 裂纹 裂纹长度 l/mm 2 粗骨料 粒径 D/mm 2.36 d/mm 8 夹角$\varphi $/(°) 0、15、30、45、60、75、90 -
[1] ATKINSON C. The interaction between a crack and an inclusion[J]. International Journal of Engineering Science, 1972, 10(2): 127-136. doi: 10.1016/0020-7225(72)90011-0 [2] RUBINSTEIN A A. Macrocrack-microdefect interaction[J]. Journal of Applied Mechanics, 1986, 53(3): 505-510. doi: 10.1115/1.3171803 [3] ANIFANTIS N K. Crack surface interference: a finite element analysis[J]. Engineering Fracture Mechanics, 2001, 68(12): 1403-1415. doi: 10.1016/S0013-7944(01)00028-5 [4] MISHURIS G, MOVCHAN A, MOVCHAN N, et al. Interaction of an interfacial crack with linear small defects under out-of-plane shear loading[J]. Computational Materials Science, 2012, 52(1): 226-230. doi: 10.1016/j.commatsci.2011.01.023 [5] 毛成,邱延峻. 沥青混凝土复合型裂纹扩展行为数值模拟[J]. 公路交通科技,2006,23(10): 20-24. doi: 10.3969/j.issn.1002-0268.2006.10.005MAO Cheng, QIU Yanjun. Numerical simulation of compound crack propagation behavior of asphalt concrete[J]. Journal of Highway and Transportation Research and Development, 2006, 23(10): 20-24. doi: 10.3969/j.issn.1002-0268.2006.10.005 [6] 黄晓明,肖益民,张裕卿. 沥青混合料黏弹性裂纹扩展[J]. 东南大学学报(自然科学版),2009,39(3): 586-591.HUANG Xiaoming, XIAO Yimin, ZHANG Yuqing. Viscoelastic crack propagation in asphalt mixtures[J]. Journal of Southeast University (Natural Science Edition), 2009, 39(3): 586-591. [7] 郭荣鑫. 夹杂物干涉机制及其对材料细观损伤的影响研究[D]. 昆明: 昆明理工大学, 2007. [8] 束一秀,李亚智,尚海江,等. 基于XFEM研究含颗粒夹杂材料的疲劳裂纹行为[J]. 固体火箭技术,2016,39(4): 547-554.SHU Yixiu, LI Yazhi, SHANG Haijiang, et al. Fatigue crack behavior in metallic panels with inclusions using XFEM[J]. Journal of Solid Rocket Technology, 2016, 39(4): 547-554. [9] KIENZLER R, HERRMANN G. Fracture criteria based on local properties of the Eshelby tensor[J]. Mechanics Research Communications, 2002, 29(6): 521-527. doi: 10.1016/S0093-6413(02)00299-9 [10] GUO Y L, LI Q. Material configurational forces applied to mixed mode crack propagation[J]. Theoretical and Applied Fracture Mechanics, 2017, 89: 147-157. doi: 10.1016/j.tafmec.2017.02.006 [11] LARSSON R, FAGERSTRÖM M. A framework for fracture modelling based on the material forces concept with XFEM kinematics[J]. International Journal for Numerical Methods in Engineering, 2005, 62(13): 1763-1788. doi: 10.1002/nme.1246 [12] 贺启林. 基于J-积分和构型力理论的材料断裂行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. [13] FAGERSTRÖM M, LARSSON R. Approaches to dynamic fracture modelling at finite deformations[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(2): 613-639. doi: 10.1016/j.jmps.2007.05.001 [14] LI Z H, CHEN Q. Crack-inclusion interaction for mode Ⅰ crack analyzed by eshelby equivalent inclusion method[J]. International Journal Of Fracture, 2002, 118(1): 29-40. doi: 10.1023/A:1022652725943 [15] 古斌,郭宇立,李群. 基于构型力断裂准则的裂纹与夹杂干涉问题[J]. 力学学报,2017,49(6): 1312-1321. doi: 10.6052/0459-1879-17-209GU Bin, GUO Yuli, LI Qun. Crack interacting with an individual inclusion by the fracture criterion of configurational force[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1312-1321. doi: 10.6052/0459-1879-17-209 [16] 于宁宇,李群. 基于数字散斑相关实验测量的材料构型力的计算方法[J]. 实验力学,2014,29(5): 579-588. doi: 10.7520/1001-4888-13-132YU Ningyu, LI Qun. On the algorithm of material configurational force based on digital image correlation measurement[J]. Journal of Experimental Mechanics, 2014, 29(5): 579-588. doi: 10.7520/1001-4888-13-132 [17] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S [18] SUKUMAR N, CHOPP D L, MOëS N, et al. Modeling holes and inclusions by level sets in the extended finite-element method[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(46/47): 6183-6200. [19] ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1957, 241: 376-396. [20] 冷严. 季冻区高速铁路沥青混凝土强化基床表层材料制备技术与综合性能试验研究[D]. 成都: 西南交通大学, 2018. [21] YOU Z P, ADHIKARI S, DAI Q L. Three-dimensional discrete element models for asphalt mixtures[J]. Journal of Engineering Mechanics, 2008, 134(12): 1053-1063. doi: 10.1061/(ASCE)0733-9399(2008)134:12(1053)