• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于贝叶斯网络的CTCS-3级列控车载系统韧性

吕彪 刘于萌

吕彪, 刘于萌. 基于贝叶斯网络的CTCS-3级列控车载系统韧性[J]. 西南交通大学学报, 2022, 57(5): 949-959. doi: 10.3969/j.issn.0258-2724.20210102
引用本文: 吕彪, 刘于萌. 基于贝叶斯网络的CTCS-3级列控车载系统韧性[J]. 西南交通大学学报, 2022, 57(5): 949-959. doi: 10.3969/j.issn.0258-2724.20210102
LYU Biao, LIU Yumeng. Resilience Assessment Based on Bayesian Network for on-Board Subsystem of CTCS-3 Train Control System[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 949-959. doi: 10.3969/j.issn.0258-2724.20210102
Citation: LYU Biao, LIU Yumeng. Resilience Assessment Based on Bayesian Network for on-Board Subsystem of CTCS-3 Train Control System[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 949-959. doi: 10.3969/j.issn.0258-2724.20210102

基于贝叶斯网络的CTCS-3级列控车载系统韧性

doi: 10.3969/j.issn.0258-2724.20210102
基金项目: 教育部人文社会科学研究青年基金(18YJC630115);中央高校基本科研业务费专项资金 (2682018CX28).
详细信息
    作者简介:

    吕彪(1980—),男,讲师,博士,研究方向为智能交通系统、交通分配及道路拥挤收费,E-mail:swjtu_lb@126.com

  • 中图分类号: U284.48

Resilience Assessment Based on Bayesian Network for on-Board Subsystem of CTCS-3 Train Control System

  • 摘要:

    为弥补现有指标的不足,引入韧性作为非常态事件下CTCS-3级(China train control system-3)列控车载子系统运行稳定性的测度指标. 提出了车载子系统韧性量化评估方法,构建了基于贝叶斯网络(Bayesian network, BN)的韧性评估模型,并定义了5种基于韧性的部件重要度指标;进一步利用贝叶斯网络双向推理功能,计算了车载子系统在不同扰动情景下的韧性及部件重要度指标. 研究结果表明:韧性可全面描述车载子系统抵御扰动和从扰动中恢复的能力,非常态事件扰动下,韧性与可用性指标存在明显差异;不同扰动情景下系统韧性明显不同,扰动发生时,车载子系统面临磁暴影响时的韧性为0.8017,而遭遇雷电时的韧性为0.8819,面临冰雪扰动时的韧性为0.9880;部件重要度存在情景依赖,同一部件在不同扰动情景下重要度排序可能不同,且可能随时间动态变化.

     

  • 图 1  CTCS-3级列控车载子系统结构

    Figure 1.  On-board subsystem structure of CTCS-3

    图 2  非常态扰动事件下韧性与可用性指标的差异

    Figure 2.  Differences in resilience and availability indexes under abnormal disturbance events

    图 3  基于GeNIe 2.0的车载子系统韧性评估模型

    Figure 3.  Resilience evaluation model of on-board subsystem based on GeNIe 2.0

    图 4  韧性指标与可用性指标的比较

    Figure 4.  Comparison of resilience index and availability index

    图 5  扰动情景对韧性的影响

    Figure 5.  Effects of disturbance scenarios on resilience

    图 6  BN反向推理

    Figure 6.  BN backward reasoning

    图 7  不同扰动下车载子系统韧性的频率直方图

    Figure 7.  Frequency histogram of on-board subsystem resilience under different disturbances

    表  1  不同扰动情景下部件参数取值

    Table  1.   Component parameter values under different disturbance scenarios

    编号名称雷电磁暴冰雪λi/h−1μi/h−1
    影响
    程度
    $ \rho _{ei} $(t0)影响
    程度
    $\rho _{ei}$(t0)影响
    程度
    $\rho _{ei}$(t0)
    E1/E2C2-CU1/C2-CU2重要10−3 ~ 10−2重要10−3 ~ 10−2一般10−4 ~ 10−31.20 × 10−52.0000
    E3/E4TCR1/TCR2重大10−2 ~ 10−1重大10−2 ~ 10−1重要10−3 ~ 10−22.30 × 10−62.0000
    E5/E6TIU1/TIU2重要10−3 ~ 10−2重要10−3 ~ 10−2一般10−4 ~ 10−32.10 × 10−52.0000
    E7/E8RTU1/RTU2重要10−3 ~ 10−2重要10−3 ~ 10−2一般10−4 ~ 10−31.80 × 10−52.0000
    E9/E10GSM-R1/GSM-R2重要10−3 ~ 10−2重大10−2 ~ 10−1一般10−4 ~ 10−31.45 × 10−82.0000
    E11/E12RS1/RS2重大10−2 ~ 10−1重大10−3 ~ 10−2重大10−2 ~ 10−11.20 × 10−52.0000
    E13/E14ATP-CU1/
    ATP-CU2
    重要10−3 ~ 10−2重要10−3 ~ 10−2一般10−4 ~ 10−31.49 × 10−52.0000
    E15/E16SDU1/SDU2重要10−3 ~ 10−2重要10−3 ~ 10−2一般10−4 ~ 10−32.50 × 10−90.2500
    E17/E18PROFIBUS1/
    PROFIBUS2
    重要10−3 ~ 10−2重要10−3 ~ 10−2一般10−4 ~ 10−36.00 × 10−60.0625
    E19BTM重要10−3 ~ 10−2重大10−2 ~ 10−1一般10−4 ~ 10−32.00 × 10−62.0000
    E20BTM ant重大10−2 ~ 10−1重大10−2 ~ 10−1重要10−3 ~ 10−27.00 × 10−80.2500
    E21DMI重要10−3 ~ 10−2重要10−3 ~ 10−2一般10−4 ~ 10−35.00 × 10−62.0000
    下载: 导出CSV

    表  2  雷电扰动下部件重要度排序

    Table  2.   Component importance rankings under lightning disturbance

    排序t = 5000 ht = 5001 ht = 5002 h
    BICIIPRAWRRWBICIIPRAWRRWBICIIPRAWRRW
    1E7E7E7E7E7E7E7E1E7E1E7E7E1E7E1
    2E9E9E9E9E9E9E9E5E9E5E9E9E3E9E3
    3E13E13E13E11E13E13E13E7E11E7E11E13E5E11E5
    4E11E1E1E13E1E11E1E9E13E9E13E1E7E13E7
    5E1E11E5E1E5E1E11E13E1E13E1E11E9E1E9
    6E3E3E11E3E11E3E3E3E3E3E3E3E11E3E11
    7E5E5E3E5E3E5E5E11E5E11E5E5E13E5E13
    8E15E15E15E15E15E15E19E15E15E15E15E19E15E15E15
    9E17E17E17E17E17E17E21E17E17E17E17E21E17E17E17
    10E19E19E19E19E19E21E15E21E19E21E19E15E19E19E19
    11E21E21E21E20E21E19E17E19E20E19E21E17E21E20E21
    12E20E20E20E21E20E20E20E20E21E20E20E20E20E21E20
    下载: 导出CSV

    表  3  磁暴扰动下部件重要度排序

    Table  3.   Component importance rankings under magnetic storm disturbance

    排序t = 5000 ht = 5001 ht = 5002 h
    BICIIPRAWRRWBICIIPRAWRRWBICIIPRAWRRW
    1E7E7E7E7E7E7E7E1E7E1E7E7E1E7E1
    2E13E13E13E9E13E13E13E7E9E7E9E13E3E9E3
    3E9E1E1E11E1E9E1E13E11E13E11E1E5E11E5
    4E11E9E5E13E5E11E9E5E13E5E13E9E7E13E7
    5E1E11E9E1E9E1E11E9E1E9E1E11E9E1E9
    6E3E3E11E3E11E3E3E11E3E11E3E3E11E3E11
    7E5E5E3E5E3E5E5E3E5E3E5E5E13E5E13
    8E15E15E15E15E15E1512E15E15E15E15E21E15E15E15
    9E17E17E17E17E17E17E15E17E17E17E17E19E17E17E17
    10E21E21E21E19E21E21E17E21E19E21E21E15E21E19E21
    11E19E19E19E20E19E19E19E19E20E19E19E17E19E20E19
    12E20E20E20E21E20E20E20E20E21E20E20E20E20E21E20
    下载: 导出CSV

    表  4  冰雪扰动下部件重要度排序

    Table  4.   Component importance rankings under snow and ice disturbances

    排序t = 5000 ht = 5001 ht = 5002 h
    BICIIPRAWRRWBICIIPRAWRRWBICIIPRAWRRW
    1E7E7E7E7E7E7E7E1E7E1E7E7E1E7E1
    2E9E9E9E9E9E9E9E3E9E3E9E9E3E9E3
    3E13E13E13E11E13E11E13E5E11E5E11E13E5E11E5
    4E11E11E1E13E1E13E11E7E13E7E13E11E7E13E7
    5E1E1E5E1E5E1E1E9E1E9E1E1E9E1E9
    6E3E3E3E3E3E3E3E11E3E11E3E3E11E3E11
    7E5E5E11E5E11E5E5E13E5E13E5E5E13E5E13
    8E15E15E15E15E15E15E19E15E15E15E15E19E15E15E15
    9E17E17E17E17E17E17E20E17E17E17E17E20E17E17E17
    10E19E19E19E19E19E19E15E19E19E19E19E15E19E19E19
    11E20E20E20E20E20E20E17E20E20E20E20E17E20E20E20
    12E20E20E20E20E20E20E20E20E20E20E20E20E20E20E20
    下载: 导出CSV
  • [1] 宁滨,刘朝英. 中国轨道交通列车运行控制技术及应用[J]. 铁道学报,2017,39(2): 1-9.

    NING Bin, LIU Chaoying. Technology and application of train operation control system for China rail transit system[J]. Journal of the China Railway Society, 2017, 39(2): 1-9.
    [2] 邸丽清,袁湘鄂,王永年. CTCS-3级列控系统RAM指标评价方法研究[J]. 中国铁道科学,2010,31(6): 92-97.

    DI LIQING, YUAN Xiang’e, WANG Yongnian. Research on the evaluation method for the RAM goals of CTCS-3[J]. China Railway Science, 2010, 31(6): 92-97.
    [3] 张文韬,张友鹏,苏宏升,等. 基于动态故障树的CTCS-3级ATP系统可靠性分析[J]. 工程设计学报,2014,21(1): 18-26.

    ZHANG Wentao, ZHANG Youpeng, SU Hongsheng, et al. Reliability analysis on ATP system of CTCS-3 based on dynamic fault tree[J]. Chinese Journal of Engineering Design, 2014, 21(1): 18-26.
    [4] 苏宏升,车玉龙,张友鹏. 基于贝叶斯网络的CTCS-3级列控系统车载子系统可靠性评估[J]. 中国铁道科学,2014,35(5): 96-104.

    SU Hongsheng, CHE Yulong, ZHANG Youpeng. Dependability assessment of CTCS-3 on-board subsystem based on Bayesian network[J]. China Railway Science, 2014, 35(5): 96-104.
    [5] 张友鹏,杨金凤. 基于动态贝叶斯网络的CTCS-3级ATP系统可靠性分析[J]. 铁道学报,2017,39(7): 79-86.

    ZHANG Youpeng, YANG Jinfeng. Reliability analysis on ATP system of CTCS-3 based on dynamic Bayesian network[J]. Journal of the China Railway Society, 2017, 39(7): 79-86.
    [6] 苏宏升,豆晓东. 基于时变可靠度的高铁列控系统维修周期的确定方法研究[J]. 铁道学报,2017,39(5): 67-70.

    SU Hongsheng, DOU Xiaodong. Determination of maintenance period based on time-varying reliability of high-speed train control system[J]. Journal of the China Railway Society, 2017, 39(5): 67-70.
    [7] 江磊,王小敏,刘一骝,等. 基于动态贝叶斯网络的CTCS3-300T列控车载系统运行可靠性及可用性评估[J]. 铁道学报,2020,42(3): 85-92.

    JIANG Lei, WANG Xiaomin, LIU Yiliu, et al. DBN-based operational reliability and availability evaluation of CTCS3-300T onboard system[J]. Journal of the China Railway Society, 2020, 42(3): 85-92.
    [8] HOLLING C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4(1): 1-23. doi: 10.1146/annurev.es.04.110173.000245
    [9] ZHOU Y M, WANG J W, YANG H. Resilience of transportation systems:concepts and comprehensive review[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(12): 4262-4276. doi: 10.1109/TITS.2018.2883766
    [10] MURRAY-TUITE P M. A comparison of transportation network resilience under simulated system optimum and user equilibrium conditions[C]// Proceedings of the 2006 Winter Simulation Conference. Monterey: IEEE, 2006: 1398-1405.
    [11] HENRY D, EMMANUEL RAMIREZ-MARQUEZ J. Generic metrics and quantitative approaches for system resilience as a function of time[J]. Reliability Engineering & System Safety, 2012, 99: 114-122. doi: 10.1016/j.ress.2011.09.002
    [12] TWUMASI-BOAKYE R, SOBANJO J O. Resilience of regional transportation networks subjected to hazard-induced bridge damages[J]. Journal of Transportation Engineering, Part A: Systems, 2018, 144(10): 4018062.1-4018062.13. doi: 10.1061/jtepbs.0000186
    [13] ZHOU L, CHEN Z H. Measuring the performance of airport resilience to severe weather events[DB/OL]. (2020-06-10)[2021-01-22]. https://doi.org/10.1016/j.trd.2020.102362
    [14] ADJETEY-BAHUN K, BIRREGAH B, CHÂTELET E, et al. A model to quantify the resilience of mass railway transportation systems[J]. Reliability Engineering & System Safety, 2016, 153: 1-14. doi: 10.1016/j.ress.2016.03.015
    [15] MARTINS M C D M, RODRIGUES DA SILVA A N, PINTO N. An indicator-based methodology for assessing resilience in urban mobility[J]. Transportation Research Part D: Transport and Environment, 2019, 77: 352-363. doi: 10.1016/j.trd.2019.01.004
    [16] GANIN A A, MERSKY A C, JIN A S, et al. Resilience in intelligent transportation systems (ITS)[J]. Transportation Research Part C: Emerging Technologies, 2019, 100: 318-329. doi: 10.1016/j.trc.2019.01.014
    [17] 上官伟,胡福威,袁敏,等. 基于弹复力效应的列控车载设备可靠性分析方法[J]. 铁道学报,2018,40(6): 75-82.

    SHANGGUAN Wei, HU Fuwei, YUAN Min, et al. Reliability analysis method for on-board equipment of train control system based on resilience effect[J]. Journal of the China Railway Society, 2018, 40(6): 75-82.
    [18] PATRIARCA R, BERGSTRÖM J, DI GRAVIO G, et al. Resilience engineering: Current status of the research and future challenges[J]. Safety Science, 2018, 102: 79-100. doi: 10.1016/j.ssci.2017.10.005
    [19] LANGSETH H, PORTINALE L. Bayesian networks in reliability[J]. Reliability Engineering & System Safety, 2007, 92(1): 92-108. doi: 10.1016/j.ress.2005.11.037
    [20] RAUSAND M, HOYLAND A. System reliability theory: models, statistical methods, and applications[M]. [S.l.]: John Wiley and Sons Ltd, 2004: 205-210.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  2549
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-02
  • 修回日期:  2021-06-30
  • 网络出版日期:  2022-08-22
  • 刊出日期:  2021-09-06

目录

    /

    返回文章
    返回