• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于样本自动标注的隧道裂缝病害智能识别

王耀东 朱力强 余祖俊 史红梅 折昌美

王耀东, 朱力强, 余祖俊, 史红梅, 折昌美. 基于样本自动标注的隧道裂缝病害智能识别[J]. 西南交通大学学报, 2023, 58(5): 1001-1008, 1036. doi: 10.3969/j.issn.0258-2724.20210092
引用本文: 王耀东, 朱力强, 余祖俊, 史红梅, 折昌美. 基于样本自动标注的隧道裂缝病害智能识别[J]. 西南交通大学学报, 2023, 58(5): 1001-1008, 1036. doi: 10.3969/j.issn.0258-2724.20210092
WANG Yaodong, ZHU Liqiang, YU Zujun, SHI Hongmei, SHE Changmei. Intelligent Tunnel Crack Recognition Based on Automatic Sample Labeling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1001-1008, 1036. doi: 10.3969/j.issn.0258-2724.20210092
Citation: WANG Yaodong, ZHU Liqiang, YU Zujun, SHI Hongmei, SHE Changmei. Intelligent Tunnel Crack Recognition Based on Automatic Sample Labeling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1001-1008, 1036. doi: 10.3969/j.issn.0258-2724.20210092

基于样本自动标注的隧道裂缝病害智能识别

doi: 10.3969/j.issn.0258-2724.20210092
基金项目: 中央高校基本科研业务费(M21JB00010);科技部国家重点研发计划(2016YFB1200402)
详细信息
    作者简介:

    王耀东(1982—),男,副教授,研究方向为轨道交通智能检测,E-mail:ydwang@bjtu.edu.cn

  • 中图分类号: TP394.1;TH691.9

Intelligent Tunnel Crack Recognition Based on Automatic Sample Labeling

  • 摘要:

    隧道表面裂缝的检测已经成为地铁运营人员的重要巡检任务之一. 为实现隧道裂缝病害的自动监测,提出一种结合病害特征提取和深度学习的隧道裂缝样本自动标注与识别算法;针对隧道裂缝形态特征建立裂缝图像的特征样本库,改进了AlexNet深度卷积网络结构;设计研制了轨道移动式隧道图像采集系统以及巡检车,采集并构建了包含4500张裂缝图像样本和1500张测试图像的数据集,用以验证算法的可行性和有效性. 研究结果表明:采集的图像清晰度符合要求,所设计算法可完成裂缝目标自动标注;裂缝图像测试集的识别率达到97.8%,证明了算法研究和采集系统的有效性.

     

  • 图 1  隧道裂缝图像采集与识别算法

    Figure 1.  Tunnel crack image acquisition and recognition algorithm

    图 2  外接矩形与比例扩充矩形原理图

    Figure 2.  External rectangle and proportional expanded rectangle

    图 3  改进的AlexNet深度卷积网络结构

    Figure 3.  Improved AlexNet deep convolution network

    图 4  隧道图像采集系统原理

    Figure 4.  Diagram of tunnel image acquisition system

    图 5  轨道移动式多目相机图像采集装置

    Figure 5.  Image acquisition device of track-sliding multi-view camera

    图 6  图像处理结果

    Figure 6.  Results of image processing

    图 7  隧道裂缝的二值图像样本数据

    Figure 7.  Binary image sample data of tunnel cracks

    图 8  提取的连通区域图像样本数据

    Figure 8.  Extracted connected region image sample data

    图 9  裂缝区域比例扩充图像样本数据

    Figure 9.  Sample data of crack region scale expansion images

    图 10  隧道图像裂缝病害测试集识别结果

    Figure 10.  Recognition results of tunnel image crack test set

    表  1  采集装置参数信息表

    Table  1.   Parameters of acquisition device

    名称参数
    相机自身旋转角度/(º)0~360
    相机可平移距离/cm0~15
    光源可平移距离/cm0~15
    光源自身旋转角度(º)0~360
    采集装置平移距离/cm±30
    采集装置上下调节距离/cm80~120
    下载: 导出CSV

    表  2  裂缝图像样本数据分类识别准确率

    Table  2.   Recognition accuracy of crack image sample data %

    样本本算法训练准确率本算法测试准确率SVM 训练准确率SVM 测试准确率
    原始图像样本88.089.175.870.3
    二值图像样本80.780.480.674.5
    裂缝外接矩形样本95.494.088.584.9
    裂缝区域扩充样本98.697.889.087.8
    下载: 导出CSV
  • [1] 罗佳,刘大刚. 基于自适应阈值和连通域的隧道裂缝提取[J]. 西南交通大学学报,2018,53(6): 1137-1141,1149. doi: 10.3969/j.issn.0258-2724.2018.06.007

    LUO Jia, LIU Dagang. Tunnel crack extraction based on adaptive threshold and connected domain[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1137-1141,1149. doi: 10.3969/j.issn.0258-2724.2018.06.007
    [2] GAO X W, LI S Q, JIN B Y, et al. Intelligent crack damage detection system in shield tunnel using combination of retinanet and optimal adaptive selection[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(3): 4453-4469.
    [3] REN Y P, HUANG J S, HONG Z Y, et al. Image-based concrete crack detection in tunnels using deep fully convolutional networks[J]. Construction and Building Materials, 2020, 234: 1-12.
    [4] 王睿,漆泰岳. 基于机器视觉检测的裂缝特征研究[J]. 土木工程学报,2016,49(7): 123-128. doi: 10.15951/j.tmgcxb.2016.07.012

    WANG Rui, QI Taiyue. Study on crack characteristics based on machine vision detection[J]. China Civil Engineering Journal, 2016, 49(7): 123-128. doi: 10.15951/j.tmgcxb.2016.07.012
    [5] 朱力强,王春薇,王耀东,等. 基于特征点集距离描述的裂缝图像匹配算法研究[J]. 仪器仪表学报,2016,37(12): 2851-2858. doi: 10.19650/j.cnki.cjsi.2016.12.027

    ZHU Liqiang, WANG Chunwei, WANG Yaodong, et al. Algorithm of crack images matching by feature points set distance description[J]. Chinese Journal of Scientific Instrument, 2016, 37(12): 2851-2858. doi: 10.19650/j.cnki.cjsi.2016.12.027
    [6] MEDINA R, LLAMAS J, GÓMEZ-GARCÍA-BERMEJO J, et al. Crack detection in concrete tunnels using a Gabor filter invariant to rotation[J]. Sensors, 2017, 17(7): 1-16.
    [7] HUANG H W, LI Q T, ZHANG D M. Deep learning based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2018, 77: 166-176. doi: 10.1016/j.tust.2018.04.002
    [8] ATTARD L, DEBONO C J, VALENTINO G, et al. Tunnel inspection using photogrammetric techniques and image processing: a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 180-188. doi: 10.1016/j.isprsjprs.2018.07.010
    [9] PROTOPAPADAKIS E, VOULODIMOS A, DOULAMIS A, et al. Automatic crack detection for tunnel inspection using deep learning and heuristic image post-processing[J]. Applied Intelligence, 2019, 49(7): 2793-2806. doi: 10.1007/s10489-018-01396-y
    [10] CHA Y J, CHOI W, BÜYÜKÖZTÜRK O. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378. doi: 10.1111/mice.12263
    [11] DORAFSHAN S, THOMAS R J, MAGUIRE M. Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete[J]. Construction and Building Materials, 2018, 186: 1031-1045. doi: 10.1016/j.conbuildmat.2018.08.011
    [12] LIU Z Q, CAO Y W, WANG Y Z, et al. Computer vision-based concrete crack detection using U-net fully convolutional networks[J]. Automation in Construction, 2019, 104: 129-139. doi: 10.1016/j.autcon.2019.04.005
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  402
  • HTML全文浏览量:  877
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 修回日期:  2021-06-21
  • 网络出版日期:  2023-05-30
  • 刊出日期:  2021-07-06

目录

    /

    返回文章
    返回