Risk Evaluation Model of Blockchain Integration Based on CKKS Encryption Scheme
-
摘要:
针对区块链平台中存在的多方数据交互不可信以及隐私数据易泄露等问题,基于CKKS (Cheon-Kim-Kim-Song)全同态加密方案,提出了一种集成风险评价模型,把同态加密算法应用到风险评价中,将多种评价模型与同态加密结合起来. 首先,利用三角模糊综合评价方法确定各评价指标的权重,通过多种评价方法处理分布式数据库中的样本数据,获得相关节点对同一交易事件的风险评价结果;其次,利用公钥对评价结果进行加密并进行同态运算,获得密文综合评价结果,以避免风险评价过程中的数据泄露;再次,利用私钥对评价结果进行解码,获得明文综合评价结果;最后,选取5 000个中欧班列企业的样本数据作为案例,利用决策树模型、Adaboost模型、Bagging模型、ExtraTree极端随机数模型、GBDT (gradient boosting regression trees)模型、KNN(K-nearest neighbor)模型、随机森林模型、SVM (support vector machine)模型等最为常见的评价模型进行风险评价,并将经CKKS方案加密后的综合评价结果与明文直接计算的综合评价结果和经BFV (Brakerski-Fan-vercauteren)方案加密后的综合评价结果进行了对比. 结果表明:该集成风险评价模型具有普适性,对较为常见的评价模型均能适用;模型的综合评价结果误差率较小,与实际结果的误差率均在10−9以内;与BFV方案加密后的结果相比,经CKKS方案加密后的结果误差率小于前者的十万分之一,评价结果更为准确.
Abstract:Aiming at solving problems of distrust in the data interaction between multiple parties and leakage of privacy data, an integrated risk assessment model based on the Cheon-Kim-Kim-Song (CKKS) fully homomorphic encryption scheme is proposed by using homomorphic encryption algorithm in combination with multiple assessment models for risk assessment. Firstly, the triangular fuzzy comprehensive evaluation method is used to determine weights of evaluation indexs, and a variety of evaluation methods are used to process the sample data in the distributed database to obtain the risk evaluation results of related nodes for the same transaction event. Secondly, the public key is used to encrypt the evaluation results, and then homomorphic operation is performed to obtain the encrypted comprehensive evaluation results, so as to avoid data leakage in the process of risk assessment. Thirdly, the private key is used to decode the evaluation results to obtain decrypted comprehensive evaluation results. Finally, 5000 samples from China Railway Express companies are taken as cases to evaluate the risk with eight common evaluation models, including the decision tree model, Adaboost model, Bagging model, ExtraTree model, gradient boosting regression tree (GBDT) model, K-nearest neighbor (KNN) model, random forest model, and support vector machine (SVM) model. In addition, the comprehensive evaluation results encrypted by CKKS scheme are compared with the results directly calculated by plaintext and encrypted by BFV scheme. The findings show that: the integrated risk assessment model is universal and applicable to more common assessment models; the error rates of the comprehensive evaluation results obtained by the integrated risk assessment model are small, within 10−9 against the actual results; compared with the result encrypted by BFV scheme, the error rate of the result encrypted by CKKS scheme is less than 1/100000 of the former, and the evaluation result is more accurate.
-
Key words:
- Blockchain /
- data leakage /
- fully homomorphic encryption scheme /
- risk assessment /
- integrated model
-
降雨是诱发边坡失稳的主要因素之一[1-3],在我国,每年几乎均有降雨诱导的滑坡. 因此,降雨作用下边坡稳定性问题受到科研人员的广泛关注. 雨水诱导边坡失稳特征及过程对人们理解边坡破坏特征、提出合理的稳定性分析方法具有重要作用. 一些学者通过室内试验研究了边坡失稳的多种破坏特征[4-8],结果表明,初始滑坡的时间主要取决于坡趾附近土体的饱和程度, 若坡趾附近土体接近饱和,不论其他部位饱和与否,土坡总会发生局部失稳破坏. 为了研究降雨诱导边坡失稳机制,人们从多角度解释相关物理现象. 已有研究表明,边坡失稳过程中产生了高孔隙水压力[4-5,9-10],而有的研究也发现当高孔隙水压力出现时边坡并不一定会发生失稳破坏[11]. 含水率对非饱和土的抗剪强度有明显影响[12-13]. 研究表明,非饱和土强度随含水率增加呈现出非线性变化特性[12,14-15]. 综合分析表明含水率和孔隙水压力在边坡内的分布特征对边坡失稳机制的解释有重要作用. 通过文献调研发现,目前对于降雨停止后边坡内孔隙水压力、含水率的空间变化尚需深入研究,雨停后边坡的失稳特征及承载力变化尚涉及较少,而这方面的内容对于边坡稳定性设计有重要作用. 另外,基覆型边坡是一种下部为基岩、上部为松散堆积体的二元结构体,很多情况下基覆界面对边坡的失稳模式有重要影响,目前对此研究较少.
基于以上分析,本文以基覆型边坡为对象,但不以某具体工程边坡为对象,而是通过概化模型进行研究. 探讨降雨作用下边坡失稳特征及对应的机制,分析雨停后不同阶段边坡的承载力变化规律,为基覆型边坡工程设计提供理论支持. 实际工程的基覆型边坡的基覆界面形状各不一样,本文对基覆界面进行抽象概化处理,采用两段直线组合模拟典型工况.
1. 相似分析
基于量纲分析法,基覆型堆积体边坡在降雨作用下稳定性及承载力的主要相似准则可表述为
zH、α、β、θ1、θ2、cγH、ϕ、ν、k√gH、Irk、 H/(tIr) 、qγH ,边坡模型示意如图1所示. 其中:z/H为边坡某位置高程z与边坡高度H之比,即相对高程,表达了该点在边坡上所处的位置信息;β 为基覆型堆积体边坡坡角;α 为边坡顶面与水平面的夹角,θ1 为基覆界面上部倾角;θ2 为基覆界面下部倾角;c/(γH) 为边坡土体的黏聚力c与边坡土体所受自重应力之比,该参数最早由Tailor于1937提出[16],称为稳定数(stability number),该无量纲量与边坡失稳条件密切相关,γ 为土体重度;ϕ 为土体内摩擦角,表达了土颗粒间相对运动的难易程度;ν 为泊松比;k/√gH 可理解为无量纲渗透系数,k 为土体的渗透系数;Ir/k 为降雨强度Ir与渗透系数之比,表示降雨量与入渗量之间的相对大小;H/(tIr) 为无量纲降雨持续时间(t为降雨持续时间);q/(γH) 为边坡顶部承载力q与自重应力之比.各物理量的相似关系如表1所示.
表 1 各物理量的相似关系Table 1. Similarity law of each physical quantity物理量 相似常数 物理量 相似常数 H CH c Cc=CγCH γ Cγ ϕ 1 g Cg ν 1 β 1 Ir CIr=C0.5HC0.5g α 1 k Ck=C0.5HC0.5g z CH t Ct=C0.5HC−0.5g θ1 1 q Cq=CγCH θ2 1 在试验过程中,γ与g保持不变,则有
Cγ =1,Cg =1. 由表1可知:与原型保持一致的物理量有γ、β 、α 、θ1、θ2、ϕ、ν ;q、H、z和c,模型比尺均为CH . 模型缩尺为C0.5H 的物理量为强雨强度、渗透系数和降雨时间,即上述物理量相对于原型边坡应缩小√CH .由上可见:物理量的模型比尺主要受边坡的几何比尺所控制,所以在一定条件下,该模型可以模拟多个原型边坡. 原型边坡的高度、土性等具有不确定性,因此,一个模型边坡模拟多个原型边坡是可能的. 综上所述,本文并不是模拟某一具体的边坡,而是一类边坡的概化模型.
2. 试验方案
试验装置由研究团队自制而成(见图2),主要由不锈钢框架与有机玻璃板构成,侧面为透明有机玻璃板,制作边坡的底板由不锈钢板构成,其上可铺设不同粗糙度的泡沫板以模拟基覆界面的粗糙程度. 本文主要采用较粗糙的泡沫板来模拟基覆界面的粗糙度. 模型箱几何尺寸为: 1.8 m(长) × 0.3 m(宽) × 1.2 m(高). 试验采用喷头式降雨器进行人工模拟降雨. 降雨强度由水泵和出水阀门控制,并用雨量计测量降雨强度,其值Ir=21.96 mm/h,根据降雨等级的划分,此降雨强度为暴雨级别.
试验采用川西某地区砂土,在试验之前对该砂土进行干燥并配置成不同的质量含水率,对不同质量含水率的砂土进行非饱和强度试验,获得土体在不同质量含水率下的强度指标,如表2、图3、4所示.
表 2 不同质量含水率条件下的强度指标Table 2. Strength index under different water moistures质量含水率/% 饱和度/% c/kPa ϕ/ (°) 0 0 0 35.89 6 25.75 2.71 32.59 12 51.50 6.09 31.15 18 77.25 6.15 30.98 23 100.00 1.16 29.88 由图3、4可知:试验所用砂土表观黏聚力(此处黏聚力主要来自毛细水压力作用)随饱和度的增加先增大后减小;砂土的ϕ则随饱和度的增大而减小. 由于含水量的增加,砂土颗粒之间受到润滑作用摩擦力减小,因此内摩擦角呈减小趋势.
试验测得砂土饱和渗透系数为0.000 31 m/s,质量含水率5%的砂土密度约为1.590 g/cm3,对应的干密度为1.514 g/cm3,此含水率下砂土的最大干密度为1.851 g/cm3, 最小干密度为1.463 g/cm3. 试验用砂的粒径级配曲线如图4所示. 由图可知:d50=0.578 mm,为粗砂,有效粒径d10=0.178 mm,控制粒径d60=0.765 mm,d30=0.37 mm. 由上可知:不均匀系数Cu= 4.3,该土为较均匀土;曲率系数为1.002(大于1.000),该土级配连续.
本试验主要使用的仪器有含水率传感器和孔隙水压力传感器,其中,含水率传感器为美国Decagon公司EC-5土壤水分传感器,该传感器综合精度为1.0%;孔隙水压力传感器是成都泰斯特公司生产的电荷型传感器,传感器量程为10 kPa, 综合精度为0.1%,也即测量误差在10 Pa左右. 在箱体侧面设置条带状白砂和箱体侧壁的初始标识线,边坡变形后,条带白砂明显偏离初始标识线,采用摄像机拍摄图像,后期进行图像处理即可得到边坡的变形. 测量仪器布置如图5所示. 图中:P1~P6为孔隙水压力传感器,W1~W6为含水率传感器,对应的为测点1~5.
试验采用质量含水率为5%的砂土. 分层填筑边坡模型,每层的填筑厚度不超过5 cm,并进行逐层夯实. 夯实完成后,利用环刀测量土体密度以及含水率,从而得到干密度,然后将边坡夯实至预设的体积. 边坡填筑完毕后间隔24 h后开始降雨试验,降雨停止后开始边坡顶部加载试验. 最终填筑完成后的边坡相对密度为0.161,土体处于疏松状态.
本试验的主要目的是进行降雨条件下基覆型边坡失稳特征及极限承载力研究,分析边坡内孔隙水压力和含水率对其稳定性的影响. 试验工况共6组(见表3). 基覆界面下部倾角为 14°, 上部倾角为52°.
表 3 边坡降雨试验设计Table 3. Design of slope rain test工况
编号降雨持续
时间/h降雨强度/
(mm•h–1)降雨
等级雨停后加
载时间/h1 4.5 21.96 暴雨 0 2 4.5 21.96 暴雨 5 3 4.5 21.96 暴雨 10 4 4.5 21.96 暴雨 20 5 4.5 21.96 暴雨 40 6 4.5 21.96 暴雨 无加载 表3中:工况6 在降雨中仅打开两个喷头,关闭坡脚上方降雨区3的喷头,目的是观察其降雨与否对坡脚破坏的影响.
针对表2中不同质量含水率的边坡土体可计算出对应的试验边坡模型的安全系数理论值,如表4所示. 由表可见,随着边坡土体质量含水率的增大,边坡安全系数也经历了先增大后减小的变化规律.
表 4 不同含水率下边坡安全系数理论值Table 4. Safety factor of slope under different water moistures质量含水率/% 饱和度/% 安全系数 0 0 < 0.10 6 25.75 1.80 12 51.50 3.70 18 77.25 4.20 23 100.00 0.85 3. 试验结果分析与讨论
3.1 边坡破坏典型特征
以工况1为例分析边坡破坏特征. 图6给出了降雨过程中边坡失稳的发展过程.
由图6可知:由于土体初始含水率较低,砂土的渗透速率大于降雨强度,所以边坡在降雨初期未出现坡面径流现象;随着降雨的发展,在t =36 min时,在坡脚处开始出现土体流动现象(图6(b)②),而出现这一现象的原因为在降雨过程中,边坡上部土体内孔隙水逐渐汇集至坡脚,导致坡脚处土体最先达到饱和而软化,同时也存在表面雨滴的冲刷作用使土体更易失稳;由于坡脚土体逐渐被雨水软化而发生破坏,边坡坡脚处出现局部脱落 (见图6(a)③和图6(b)③);随着降雨的持续进行,土体脱落的范围逐渐增大,进而导致上方土体临空面加大,土体破坏后随即被雨水饱和软化而向下滑动,后方土体进一步被侵蚀,最终造成了一定深度和宽度的边坡破坏现象(图6(a)④、图6(b)④).
在前5个工况中,边坡坡脚均在30 min左右呈现流动破坏,而工况6在降雨t = 56 min时才出现边坡坡脚流动破坏(见图7). 如前所述,边坡坡脚土体的破坏主要是土体饱和软化导致的. 工况6少了土体表面的雨水冲刷作用,且土体内部雨水入渗作用削弱,进而出现了工况6坡脚土体流动破坏晚于其他工况的现象. 此外,在工况6中,土体局部脱落体积明显小于其他工况. 由此可知:在坡脚处降雨会加速坡脚土壤的破坏. 因此,在实际的边坡治理过程中,在坡脚处应当做好排水和加固措施.
3.2 降雨前后土体体积含水率与孔隙水压力变化规律
边坡土体含水率和孔隙水压力的变化对分析边坡失稳机制有重要作用. 图8和图9给出了降雨过程中边坡土体体积含水率和孔隙水压力随时间的变化. 图8表明:降雨初期,各传感器含水率均较稳定;随着降雨的持续进行,坡体下部体积含水率首先增长,这说明雨水会首先在坡脚附近积累,随着降雨的持续进行,边坡中部和上部体积含水率依次增长(图9).
由体积含水率变化曲线可知:测点3、4、5号的体积含水率均小于饱和状态下的体积含水率,即未达到饱和状态;测点1、2、6号处均达到饱和,所以可以判定在降雨过程中,边坡内部水位线始终处于边坡中下部,表明降雨过程中随着雨水的不断入渗,雨水逐渐从各处汇至坡脚,边坡内部水位线逐渐由坡脚上升至边坡中部(图9). 由此可见边坡坡脚处土体最先饱和,因此坡脚最先发生破坏(图6(b)②).
降雨过程中,边坡表面体积含水率首先开始上升,随着降雨的进行而趋于稳定,随后土体内部体积含水率由外到里依次增加. 在雨水入渗至边坡坡脚处基覆界面之后,该区域土体的体积含水率开始增大,并达到饱和状态. 当坡脚基覆界面附近土体含水量达到饱和后,边坡中的水位开始逐渐上升,在降雨作用下由下至上各测点土体依次达到饱和. 由此也进一步解释了随着降雨的持续进行,边坡坡脚土体局部脱落范围不断增大的原因.
由图9(a)可知:雨停后土体含水率随即开始下降;边坡上部(W5、W4传感器处)所在土体体积含水率最先开始下降,最后稳定在17%左右;边坡下部表层土体(W6号传感器处)也很快开始下降,直至稳定在33%左右;与边坡上部及表层土体(W4、W5、W6号传感器位置)不同,边坡坡角及基覆界面处土体含水率下降缓慢. 由上可知:降雨停止过后,边坡土体内部水位线不断下降. 雨停后较长时间内,在基覆界面和坡脚处均存在残留水,所以测点1、2、3处土体体积含水率始终保持在饱和含水率附近,其体积含水率时程曲线变化较小,数值较为平稳.
图10为降雨过程中孔隙水压力随时间的变化. 由图8和图10表明:各测点孔隙水压力值在降雨初期基本没有变化;随着降雨的持续,边坡内各测点孔隙水压力值从外到里依次增加,并且边坡中下部孔隙水压力最先趋于稳定,并达到正峰值,表明降雨过程中边坡土体水位线由坡脚逐渐上升至边坡中部,这与前述结论一致,而边坡中上部孔隙水压力稳定峰值均为负值,表明降雨过程中边坡中上部土体在降雨过程中均始终处于水位线以上. 由此可见:边坡坡脚处孔隙水压力最先达到正值,从而使该处土体有效应力最先减小,也促使其最先破坏.
由图9(b)可以看出:各测点孔隙水压力数值都有所变化. 边坡上部土体(测点4、5号处)孔隙水压力迅速下降;边坡中下部土体孔隙水压力也呈现下降趋势,但与上部相比下降速率较为缓慢;而坡脚处孔隙水压力下降速率则非常缓慢.
从以上分析可见:降雨过程中边坡土体含水率与坡内孔隙水压力呈同方向变化,含水率增加,孔隙水压力增大,含水率稳定时孔隙水压力也稳定,含水率下降,孔隙水压力也相应下降,土体含水率与孔隙水压力几乎同步变化.
3.3 边坡失稳机制分析
通过对边坡含水率、孔隙水压力分布和边坡失稳特征的分析,发现在降雨作用下边坡坡脚附近土体含水率和孔隙水压力增长最快,此处土体最先达到饱和,且孔隙水压力最高,饱和后随着降雨的进行,土体从塑态过渡到流态,土体几乎失去了强度,从而坡脚土体发生了破坏. 随着降雨持续进行,从坡脚至坡体中下部含水率和孔隙水压力逐渐升高,部分区域土体也达到饱和状态而发生失稳,因此出现了边坡失稳逐渐从坡脚向坡中发展的现象. 在降雨持续一定时间后,边坡内土体含水量将达到较高值,此时土体强度将较大幅度减小,整个边坡稳定性进一步降低,随着边坡坡脚土体的变形而失去承载力,最终整个边坡将发生整体失稳.
3.4 雨停后各工况边坡极限承载力及破坏模式
试验表明:经过4.5 h降雨后,边坡仅在坡脚处发生了局部破坏,并未发生整体破坏,边坡尚有较高地承载力,在其顶部能够承受一定大小的静荷载. 当降雨结束后的不同时间内,边坡所能承受的极限静荷载是否会发生变化,如有变化,其变化规律是怎样的,这对于实际工程有一定的指导意义. 基于此,本文探讨了降雨停止后边坡极限承载力的变化规律及其对应的破坏模式. 加载方式通过短时间内在边坡顶面分级施加静荷载来探讨边坡承载力的大小. 每级荷载大小控制在5 kg以内,前期用大值,临近破坏时用小值. 这样保证了每个工况加荷等级在10级以上,且能较好地控制误差. 由各工况试验现象可以看出,边坡在顶部静荷载作用下破坏模式可概括为整体滑移模式和局部滑移模式,如图11~13所示. 对工况1而言,在雨水浸泡及渗流作用下,降雨刚停止时边坡土体含水率高,孔隙水压力高,基质吸力小,边坡稳定性较弱,当坡顶的静荷载较小时,边坡滑移面出现在基覆界面附近(图13). 从工况2~5可以发现,降雨停止后,边坡内部水体逐渐从坡脚流出,边坡土体含水率逐渐下降,孔隙水压力逐渐减小,基质吸力逐渐增大,从而土体抗剪强度有所提高,最终使得边坡破坏模式为局部滑移,即在中上部位置破坏面沿基覆界面滑动,在中下部位置破坏面沿坡体内部发展,最后在坡脚上部某一位置剪出.
图14给出了边坡极限荷载与雨停后时间的变化曲线. 从图可看出:降雨停止后,边坡所能承受的极限荷载先增大后减小,最后趋于稳定,表明边坡稳定性在降雨停止时刻最小,随时间增加,稳定性逐渐增大,在某一时刻达到最大,随时间进一步增大,边坡稳定性略有减小直至稳定不变. 该现象可根据前述砂土的强度指标随含水率的变化规律进行解释. 从图3可知:随着砂土含水率从饱和开始降低,其黏聚力经历了逐渐增大然后减小的规律,而内摩擦角呈缓慢减小趋势. 从边坡稳定性系数的理论分析结果(见表4)可知:其稳定性在边坡饱和时很低. 结合已有研究结果[17],在含水率从饱和开始下降,砂土强度也经历了一个先增大后减小的过程. 因此当降雨停止一段时间后,砂土强度增大到最大值,边坡极限承载力最高. 其后含水率稳定,边坡极限承载力也稳定在一定值.
4. 结 论
本文对降雨作用下基覆型边坡失稳特征及承载力进行了试验研究,得出了以下结论:
1) 降雨作用下边坡坡脚附近土体含水率增长最快,孔隙水压力最先达到正值,土体最先发生破坏. 随降雨的进行,边坡内水位逐步上升,边坡破坏位置逐步从坡脚向上发展.
2) 降雨停止后,边坡内土体含水率和孔隙水压力随即开始下降,而坡脚处含水率和孔隙水压力下降速率非常缓慢,雨停后相当长一段时间内仍保持较高数值. 边坡内土体含水率与孔隙水压力几乎保持同步变化.
3) 雨停后随着时间的推移,边坡所能承受的极限荷载呈增大—减小—稳定不变的变化趋势,即边坡稳定性在降雨停止时刻最小,随时间增加,稳定性逐渐增大,在某一时刻达到最大,随时间进一步增大,边坡稳定性略有减小直至稳定不变.
4) 雨停后基覆型边坡在顶部静荷载作用下破坏模式主要呈现两种模式,即整体滑移模式和局部滑移模式.
-
表 1 0.1~0.9标度的含义
Table 1. Meaning of scale 0.1~0.9
标度 对应的三角模糊数 含义 0.1 (0.1,0.1,0.2) 指标 i 相对于指标 j 极端不重要 0.3 (0.2,0.3,0.4) 指标 i 相对于指标 j 明显不重要 0.5 (0.4,0.5,0.6) 指标 i 与指标 j 同样重要 0.7 (0.6,0.7,0.8) 指标 i 相对于指标 j 明显重要 0.9 (0.8,0.9,0.9) 指标 i 相对于指标 j 极端重要 表 2 定性指标量化评分表
Table 2. Quantitative scoring of qualitative indices
定性指标 评价指标分档/分 [8, 10] [4, 8) [0, 4) 交易履约情况(X8) 好 中 差 核心企业的对外担保状况(X9) 几乎无 少量 较多 供应链关系的强度(X10) 高 中 低 表 3 三角模糊打分表
Table 3. Triangular fuzzy scoring results
k B1 B2 B3 B4 B5 1 (0.1,0.2,0.3) (0,0.1,0.3) (0.1,0.3,0.5) (0.5,0.2,0.3) (0.6,0.8,0.9) 2 (0.2,0.3,0.3) (0.4,0.7,0.8) (0.3,0.2,0.2) (0.7,0.8,0.9) (0.1,0.2,0.4) 3 (0.4,0.5,0.3) (0.1,0.3,0.5) (04,0.5,0.7) (0.1,0.4,0.6) (0.1,0.6,0.7) 4 (0.5,0.7,0.3) (0.3,0.6,0.9) (0.4,0.6,0.8) (0.3,0.5,0.7) (0.1,0.3,0.4) 5 (0.6,0.4,0.3) (0.2,0.4,0.5) (0.5,0.8,0.9) (0.5,0.6,0.8) (0.2,0.4,0.5) wm (0.15, 0.21,0.32) (0.13,0.22,0.35) (0.11,0.18,0.28) (0.18,0.25,0.39) (0.09,0.14,0.24) 表 4 指标赋权结果
Table 4. Index weighting results
指标名称 变量 权重 指标名称 变量 权重 企业规模 X1 0.0246 核心企业对外担保情况 X9 0.1512 销售利润率 X2 0.0833 供应链关系强度 X10 0.0014 速动比率 X3 0.0255 赊销周期 X11 0.1146 存货周转率 X4 0.0117 产品可替代性 X12 0.0884 资产负债率 X5 0.0140 权益乘数 X13 0.0176 交易量 X6 0.0748 质押物变现能力 X14 0.0799 交易金额 X7 0.0363 总资产周转率 X15 0.1329 交易履约情况 X8 0.1437 表 5 CKKS方案和BFV方案同态加密结果及误差率
Table 5. Homomorphic encryption results and error rates of CKKS and BFV schemes
编号 KNN 模型 +
随机森林模型CKKS 全同态加密
评价结果CKKS 方案
误差率BFV 全同态加密
评价结果BFV 方案
误差率1 48.6117737805 48.6117737789 3.34 × 10−11 48.6094744655 4.73 × 10−5 2 38.4173642857 38.4173642916 1.53 × 10−10 38.3934853887 6.22 × 10−4 3 66.6095043478 66.6095043506 4.09 × 10−11 66.6003539367 1.37 × 10−4 4 40.7277690992 40.7277690999 1.66 × 10−11 40.7098999864 4.39 × 10−4 5 36.0318162194 36.0318162184 2.58 × 10−11 36.0170565909 4.10 × 10−4 6 39.2235467290 39.2235467305 3.98 × 10−11 39.1413627605 2.10 × 10−3 7 45.2551751634 45.2551751619 3.20 × 10−11 45.2384881180 3.69 × 10−4 8 85.5722701987 85.5722701993 7.54 × 10−12 85.5655826327 7.82 × 10−5 9 59.7378161329 59.7378161324 8.14 × 10−12 59.7254652272 2.07 × 10−4 10 49.4582034252 49.4582034281 5.74 × 10−11 49.4489389677 1.87 × 10−4 11 50.6262683040 50.6262683016 4.62 × 10−11 50.6237741777 4.93 × 10−5 12 59.0855247219 59.0855247221 4.30 × 10−12 59.0248410817 1.03 × 10−3 13 50.8218075188 50.8218075195 1.39 × 10−11 50.8154754434 1.25 × 10−4 14 51.5208750000 51.5208750014 2.77 × 10−11 51.5204698244 7.86 × 10−6 15 40.6476813842 40.6476813860 4.43 × 10−11 40.6440481786 8.94 × 10−5 16 41.8885428177 41.8885428182 1.16 × 10−11 41.8792671831 2.21 × 10−4 17 37.0070685441 37.0070685404 1.01 × 10−10 36.9933666065 3.70 × 10−4 18 66.6304171240 66.6304171283 6.33 × 10−11 66.6209557226 1.42 × 10−4 19 14.8742302481 14.8742302472 6.03 × 10−11 14.8490706101 1.69 × 10−3 20 38.9383642857 38.9383642857 3.34 × 10−11 38.8372207385 2.60 × 10−5 -
[1] ELGHAISH F A K, ABRISHAMI S, HOSSEINI M R. Integrated project delivery with blockchain: an automated financial system[J]. Automation in Construction, 2020, 114(1): 209-224. [2] LIU H, ZHANG Y, YANG T. Blockchain-enabled security in electric vehicles cloud and edge computing[J]. IEEE Network, 2018, 32(3): 78-83. doi: 10.1109/MNET.2018.1700344 [3] 邰雪,孙宏斌,郭庆来. 能源互联网中基于区块链的电力交易和阻塞管理方法[J]. 电网技术,2016,40(12): 3630-3638.TAI Xue, SUN Hongbin, GUO Qinglai. Electricity transactions and congestion management based on blockchain in energy internet[J]. Power System Technology, 2016, 40(12): 3630-3638. [4] 张宁,王毅,康重庆,等. 能源互联网中的区块链技术:研究框架与典型应用初探[J]. 中国电机工程学报,2016,36(15): 4011-4023.ZHANG Ning, WANG Yi, KANG Chongqing, et al. Blockchain technique in the energy Internet: preliminary research framework and typical applications[J]. Proceedings of the CSEE, 2016, 36(15): 4011-4023. [5] 袁勇,王飞跃. 区块链技术发展现状与展望[J]. 自动化学报,2016,42(4): 481-494.YUAN Yong, WANG Feiyue. Blockchain: the state of the art and future trends[J]. Acta Automatica Sinica, 2016, 42(4): 481-494. [6] OMRAN Y, HENKE M, HEINES R, et al. Blockchain-driven supply chain finance: towards a conceptual framework from a buyer perspective[C]//2017: 26th Annual Conference of the International Purchasing and Supply Education and Research Association. Budapest: [s.n.], 2017: 1-15. [7] 徐忠,邹传伟. 区块链能做什么、不能做什么?[J]. 金融研究,2018(11): 1-16.XU Zhong ZOU Chuanwei. What can blockchain do and cannot do?[J]. Journal of Financial Research, 2018(11): 1-16. [8] 龚强,班铭媛,张一林. 区块链、企业数字化与供应链金融创新[J]. 管理世界,2021,37(2): 3,22-34. doi: 10.3969/j.issn.1002-5502.2021.02.004GONG Qiang, BAN Mingyuan, ZHANG Yilin. Blockchain, enterprise digitalization and supply chain finance innovation[J]. Journal of Management World, 2021, 37(2): 3,22-34. doi: 10.3969/j.issn.1002-5502.2021.02.004 [9] RIVEST RL, ADLEMAN L M, DERTOUZOS M L. On databanks and privacy homomorphisms[J]. Foundations of Secure Computation, 1978, 76(4): 169-179. [10] GOLDWASSER S, MICALI S. Probabilistic encryption[J]. Journal of Computer and System Sciences, 1984, 28(2): 270-299. doi: 10.1016/0022-0000(84)90070-9 [11] GENTRY C. Fully homomorphic encryption using ideal lattices[C]//In Proceedings of the Forty-First Annual ACM Symposium on Theory of computing, Association for Computing Machinery. New York: ACM Press, 2009: 169-178. [12] GENTRY C. A fully homomorphic encryption scheme[M]. Ann Arbor: [s.n.], 2009. [13] CHEON J H , KIM A , KIM M , et al. Homomorphic encryption for arithmetic of approximate numbers[C]//International Conference on the Theory and Application of Cryptology and Information Security. Hong Kong: Springer, 2017: 409-437. [14] 郑尚文,刘尧,周潭平,等. 优化的基于错误学习问题的CKKS方案[J]. 计算机应用,2021,41(6): 1723-1728.ZHENG Shangwen, LIU Yao, ZHOU Tanping, et al. Optimized CKKS scheme based on learning with errors problem[J]. Journal of Computer Applications, 2021, 41(6): 1723-1728. [15] NAKASUMI M. Information sharing for supply chain management based on block chain technology[C]//2017 IEEE 19th Conference on Business Informatics. Thessaloniki: IEEE, 140-149. [16] 刘彦松,夏琦,李柱,等. 基于区块链的链上数据安全共享体系研究[J]. 大数据,2020,6(5): 92-105.LIU Yansong, XIA Qi, LI Zhu, et al. Research on secure data sharing system based on blockchain[J]. Big Data Research, 2020, 6(5): 92-105. [17] 钱萍,吴蒙. 同态加密隐私保护数据挖掘方法综述[J]. 计算机应用研究,2011,28(5): 1614-1617,1622. doi: 10.3969/j.issn.1001-3695.2011.05.004QIAN Ping, WU Meng. Survey of privacy preserving data mining methods based on homomorphic encryption[J]. Application Research of Computers, 2011, 28(5): 1614-1617,1622. doi: 10.3969/j.issn.1001-3695.2011.05.004 [18] DU M X, CHEN Q J, XIAO J, et al. Supply chain finance innovation using blockchain[J]. IEEE Transactions on Engineering Management, 2020, 67(4): 1045-1058. doi: 10.1109/TEM.2020.2971858 [19] 王竹泉,宋晓缤,王苑琢. 我国实体经济短期金融风险的评价与研判——存量与流量兼顾的短期财务风险综合评估与预警[J]. 管理世界,2020,36(10): 156-170,216. doi: 10.3969/j.issn.1002-5502.2020.10.012WANG Zhuquan, SONG Xiaobin, WANG Yuanzhuo. Objective evaluation and rational judgment of short-term financial risk in China’s real economy: comprehensive assessment and early warning of short-term financial risk considering stock and flow[J]. Management World, 2020, 36(10): 156-170,216. doi: 10.3969/j.issn.1002-5502.2020.10.012 [20] 廖礼坤,张炜. 导入期风险企业的风险综合评价[J]. 西南交通大学学报,2004,39(5): 590-594. doi: 10.3969/j.issn.0258-2724.2004.05.008LIAO Likun, ZHANG Wei. Synthetical evaluation of risks of venture business during start-up period[J]. Journal of Southwest Jiaotong University, 2004, 39(5): 590-594. doi: 10.3969/j.issn.0258-2724.2004.05.008 [21] 龙云飞. 基于熵值法的中小企业供应链融资信用风险评价[J]. 统计与决策,2013(13): 177-179. [22] 程昔武,丁忠明. 高校负债融资风险及其评价方法研究[J]. 财贸研究,2009,20(6): 131-138,152. doi: 10.3969/j.issn.1001-6260.2009.06.022CHENG Xiwu, DING Zhongming. Research on risk of debt financing to colleges & universities and it’s evaluating[J]. Finance and Trade Research, 2009, 20(6): 131-138,152. doi: 10.3969/j.issn.1001-6260.2009.06.022 [23] 曹清玮,戴丽芳,孙琪,等. 社会网络环境下基于分布式信任的在线评价方法[J]. 控制与决策,2020,35(7): 1697-1702.CAO Qingwei, DAI Lifang, SUN Qi, et al. A distributed trust based online evaluation under social network[J]. Control and Decision, 2020, 35(7): 1697-1702. [24] 仇文革,李俊松,胡兰,等. 基于WebGIS的地下工程安全风险管理系统[J]. 西南交通大学学报,2011,46(6): 953-959,965. doi: 10.3969/j.issn.0258-2724.2011.06.011QIU Wenge, LI Junsong, HU Lan, et al. WebGIS-based safety risk management system of underground engineering[J]. Journal of Southwest Jiaotong University, 2011, 46(6): 953-959,965. doi: 10.3969/j.issn.0258-2724.2011.06.011 [25] 胡兰,胡培. 基于概率论-逻辑学的隧道各方关系与风险研究[J]. 西南交通大学学报,2013,48(6): 1122-1128. doi: 10.3969/j.issn.0258-2724.2013.06.024HU Lan, HU Pei. Relation and risk in owner and contractors of tunnel projects based on probability and logic theories[J]. Journal of Southwest Jiaotong University, 2013, 48(6): 1122-1128. doi: 10.3969/j.issn.0258-2724.2013.06.024 [26] 何正友,冯玎,林圣,等. 高速铁路牵引供电系统安全风险评估研究综述[J]. 西南交通大学学报,2016,51(3): 418-429. doi: 10.3969/j.issn.0258-2724.2016.03.002HE Zhengyou, FENG Ding, LIN Sheng, et al. Research on security risk assessment for traction power supply system of high-speed railway[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 418-429. doi: 10.3969/j.issn.0258-2724.2016.03.002 [27] 吴波前,蔡伯根,陆德彪,等. 基于GNSS/INS的列车定位风险评估方法[J]. 西南交通大学学报,2020,55(6): 1191-1198. doi: 10.3969/j.issn.0258-2724.20190981WU Boqian, CAI Baigen, LU Debiao, et al. GNSS/INS based risk assessment in train localization[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1191-1198. doi: 10.3969/j.issn.0258-2724.20190981 [28] 刘曙阳. CI 系统开发技术[M]. 北京: 国防工业出版社, 1997. [29] 刘颖,张丽娟,韩亚男,等. 基于粒子群协同优化算法的供应链金融信用风险评价模型[J]. 吉林大学学报(理学版),2018,56(1): 119-125.LIU Ying, ZHANG Lijuan, HAN Yanan, et al. Financial credit risk evaluation model of supply chain finance based on particle swarm cooperative optimization algorithm[J]. Journal of Jilin University (Science Edition), 2018, 56(1): 119-125. -