• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高铁声屏障连接螺栓松弛对疲劳寿命的影响

卫星 汪蓉蓉 温宗意 戴李俊 胡喆

卫星, 汪蓉蓉, 温宗意, 戴李俊, 胡喆. 高铁声屏障连接螺栓松弛对疲劳寿命的影响[J]. 西南交通大学学报, 2023, 58(2): 373-380. doi: 10.3969/j.issn.0258-2724.20210060
引用本文: 卫星, 汪蓉蓉, 温宗意, 戴李俊, 胡喆. 高铁声屏障连接螺栓松弛对疲劳寿命的影响[J]. 西南交通大学学报, 2023, 58(2): 373-380. doi: 10.3969/j.issn.0258-2724.20210060
WEI Xing, WANG Rongrong, WEN Zongyi, DAI Lijun, HU Zhe. Influence of Bolt Relaxation of High-Speed Railway Sound Barrier on Fatigue Life[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 373-380. doi: 10.3969/j.issn.0258-2724.20210060
Citation: WEI Xing, WANG Rongrong, WEN Zongyi, DAI Lijun, HU Zhe. Influence of Bolt Relaxation of High-Speed Railway Sound Barrier on Fatigue Life[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 373-380. doi: 10.3969/j.issn.0258-2724.20210060

高铁声屏障连接螺栓松弛对疲劳寿命的影响

doi: 10.3969/j.issn.0258-2724.20210060
基金项目: 四川省科技创新人才(2020JDRC0009)
详细信息
    作者简介:

    卫星(1976—),男,教授,研究方向为钢结构桥梁行为,E-mail: we_star@swjtu.cn

  • 中图分类号: U213.8

Influence of Bolt Relaxation of High-Speed Railway Sound Barrier on Fatigue Life

  • 摘要:

    螺栓的疲劳寿命和松弛寿命影响着螺栓的使用寿命,在疲劳和松弛的共同作用下,柱脚处连接不断退化,为探究高铁声屏障连接螺栓松弛对疲劳寿命的影响,以某速度为400 km/h高铁声屏障非对称排布和对称排布螺栓为研究对象,利用ANSYS建立柱脚螺栓有限元模型,通过降温法施加预紧力,并施加正负单位弯矩荷载,计算柱脚最不利螺栓在不同预紧力作用下的应力幅,提出了应力幅随预紧力变化的拟合关系式;利用Midas建立声屏障整体模型,分析列车在400 km/h行驶速度下结构动力响应特性,提取柱脚螺栓弯矩时程结果,对仅考虑疲劳失效的螺栓寿命和考虑松弛疲劳共同影响下的螺栓寿命进行比较. 研究结果表明:螺栓松弛会使预紧力下降,导致两种柱脚模型的螺栓应力幅增大;在已有的柱脚螺栓时程计算中,考虑松弛疲劳共同影响下的疲劳寿命比仅考虑疲劳作用时大大降低,当松弛导致预紧力下降至55%以后,将会产生疲劳效应,该结果可为连接结构领域设计人员定量评估螺栓寿命以及对螺栓的维修养护方面提供参考依据.

     

  • 图 1  螺栓柱脚细部构造

    Figure 1.  Detailed structure of bolt base

    图 2  建立接触单元

    Figure 2.  Establish contact unit

    图 3  螺栓柱脚整体模型

    Figure 3.  Whole model of bolt base

    图 4  荷载施加模型

    Figure 4.  Model with applied load

    图 5  螺栓应力变化曲线

    Figure 5.  Variation of bolt stress with preload

    图 6  螺栓应力幅变化曲线

    Figure 6.  Variation of bolt stress amplitude with preload

    图 7  螺栓应力变化曲线

    Figure 7.  Variation of bolt stress with preload

    图 8  螺栓应力幅变化曲线

    Figure 8.  Variation of bolt stress amplitude with preload

    图 9  连接部分

    Figure 9.  Connection parts

    图 10  桩基础边界条件

    Figure 10.  Boundary conditions of pile foundation

    图 11  声屏障整体模型

    Figure 11.  Whole model of sound barrier

    图 12  脉动风压下立柱根部弯矩

    Figure 12.  Bending moment of column root under fluctuating wind pressure

    图 13  底板螺栓应力时程变化曲线

    Figure 13.  Time history curve of stress of base plate bolt

    表  1  材料参数

    Table  1.   Material parameters

    材料弹性模量/Pa泊松比切线模量/GPa
    Q2352.06 × 10110.32.06
    C303.00 × 10100.2
    下载: 导出CSV

    表  2  预紧力大小与对应应力幅

    Table  2.   Preload value and the corresponding stress amplitude

    预紧力
    大小/kN
    单位弯矩/
    (MN·mm)
    预紧力/
    MPa
    应力幅/
    MPa
    0 1 5.02 5.20
    −1 −0.26
    16.0 1 2.18 2.32
    −1 −0.20
    48.0 1 0.94 1.06
    −1 −0.17
    80.0 1 0.65 0.76
    −1 −0.15
    160.0 1 0.45 0.55
    −1 −0.14
    下载: 导出CSV

    表  3  预紧力大小与对应应力幅

    Table  3.   Preload value and the corresponding stress amplitude

    预紧力
    大小/kN
    单位弯矩/
    (MN·mm)
    应力/
    MPa
    应力幅/
    MPa
    0 1 6.63 6.85
    −1 −0.31
    7.5 1 4.92 5.05
    −1 −0.18
    22.5 1 2.27 2.38
    −1 −0.15
    37.5 1 1.42 1.50
    −1 −0.12
    75.0 1 0.80 0.83
    −1 −0.04
    下载: 导出CSV

    表  4  材料参数

    Table  4.   Material parameters

    部件材料密度/
    (kg·m−3
    弹性模量/
    GPa
    泊松比
    钢构件Q23578502060.30
    底梁和桩基础C302360300.20
    铝合金复合
    吸声板
    复合
    材料
    250710.33
    下载: 导出CSV

    表  5  桩基主要控制参数

    Table  5.   Main control parameters of pile foundation

    名称控制值
    桩侧水平抗力系数的比例系数/(MN·m−4≥60
    桩侧土土壤容重/(kN·m−317.5~19.5
    桩侧土土壤内摩擦角/(°)≥30
    桩侧限端阻力标准值/kPa≥850
    桩侧土的阻力/kPa≥70
    下载: 导出CSV

    表  6  雨流计数结果

    Table  6.   Rain flow counting results

    应力幅值/MPa作用次数
    12.19 1
    4.69
    4.14
    3.39
    3.08
    下载: 导出CSV

    表  7  雨流计数结果

    Table  7.   Rain flow counting results

    应力幅值/MPa作用次数
    35.111
    13.50
    11.93
    9.75
    8.86
    下载: 导出CSV

    表  8  400辆/d疲劳损伤分析

    Table  8.   Fatigue damage analysis for 400 veh/d

    循环
    次数/次
    应力幅值/
    MPa
    n/次疲劳
    损伤
    T/d
    40035.116.41×1066.24×10−516037.23
    下载: 导出CSV
  • [1] 孔繁晓,言婷,周海波. 预紧力对风电叶片根部螺栓疲劳寿命的影响分析[J]. 风机技术,2017,59(6): 49-52. doi: 10.16492/j.fjjs.2017.06.0008

    KONG Fanxiao, YAN Ting, ZHOU Haibo. Influence of the pretightening stress on the fatigue life of a bolt used for wind turbine blades[J]. Chinese Journal of Turbomachinery, 2017, 59(6): 49-52. doi: 10.16492/j.fjjs.2017.06.0008
    [2] 朱若燕,李厚民. 高强度螺栓的预紧力及疲劳寿命[J]. 湖北工学院学报,2004,19(3): 135-136,141.

    ZHU Ruoyan, LI Houmin. Preload and fatigue life of high strength bolt[J]. Journal of Hubei University of Technology, 2004, 19(3): 135-136,141.
    [3] 吴勇,陈琴珠,邹慧君. 摩擦离合器螺栓联接预紧力对疲劳寿命的影响[J]. 机械设计与研究,2012,28(6): 67-69.

    WU Yong, CHEN Qinzhu, ZOU Huijun. Effect of preload on fatigue life of friction clutch bolt[J]. Machine Design & Research, 2012, 28(6): 67-69.
    [4] 刘嘉慧,林腾蛟,吕和生,等. 多工况下风电齿轮箱联接螺栓疲劳寿命分析[J]. 机械研究与应用,2020,33(3): 95-101. doi: 10.16576/j.cnki.1007-4414.2020.03.027

    LIU Jiahui, LIN Tengjiao, LV Hesheng, et al. Fatigue life analysis of the bolt connections for wind turbine gearbox under multiple working conditions[J]. Mechanical Research & Application, 2020, 33(3): 95-101. doi: 10.16576/j.cnki.1007-4414.2020.03.027
    [5] 祝雨. 螺栓联接的预紧力与疲劳强度的讨论[J]. 化工管理,2016(35): 256.
    [6] 郭卫凡,唐文良. 螺栓联接的预紧力与疲劳强度的讨论[J]. 科技视界,2013(23): 65-66.

    GUO Weifan, TANG Wenliang. A discussion of effect of preload on bolt joint fatigue strength[J]. Science & Technology Vision, 2013(23): 65-66.
    [7] LIU Y Z, CHEN J, ZHANG X F, et al. Fatigue behaviour of blind bolts under tensile cyclic loads[J]. Journal of Constructional Steel Research, 2018, 148: 16-27. doi: 10.1016/j.jcsr.2018.05.019
    [8] PENNEC F, DURIF S, CAMARA A B, et al. 01.16: Fatigue behaviour analysis of bolts in tee-stub steel connections[J]. ce/papers, 2017, 1(2/3): 298-307.
    [9] 曹罚君. 多轴非比例载荷谱条件下高强度螺栓疲劳强度分析[J]. 机械强度,2019,41(1): 232-237.

    CAO Fajun. Fatigue strength analysis of high-strength joint bolts under multiaxial nonproportional loading spectrum[J]. Journal of Mechanical Strength, 2019, 41(1): 232-237.
    [10] 刘育,晋健,王勇飞,等. 基于PD-STFA的水轮机顶盖联接螺栓疲劳寿命计算方法研究[J]. 机械强度,2020,42(6): 1459-1465.

    LIU Yu, JIN Jian, WANG Yongfei, et al. Research on the fatigue life calculation method of hydro-turbine head cover connecting bolts based on pd-stfa[J]. Journal of Mechanical Strength, 2020, 42(6): 1459-1465.
    [11] 汤春球,周科帆,莫易敏,等. 基于有限元仿真的螺栓疲劳性能分析[J]. 数字制造科学,2017,15(增1): 30-35.

    TANG Chunqiu, ZHOU Kefan, MO Yimin, et al. FEA fatigue simulation on the bolt performance[J]. Digital Manufacture Science, 2017, 15(S1): 30-35.
    [12] 彭飞. 螺栓预紧力对发动机气缸盖疲劳特性的影响[J]. 唐山学院学报,2020,33(3): 56-59.

    PENG Fei. Effect of the bolt pretightening force on the fatigue properties of engine cylinder head[J]. Journal of Tangshan University, 2020, 33(3): 56-59.
    [13] 杜静,黄文,王磊,等. 基于接触分析的高强度螺栓疲劳寿命分析[J]. 现代科学仪器,2013(1): 73-77,90.

    DU Jing, HUANG Wen, WANG Lei, et al. Fatigue life analysis of the high intention bolt based on contact analysis[J]. Modern Scientific Instruments, 2013(1): 73-77,90.
    [14] MAJZOOBI G H, FARRAHI G H, HABIBI N. Experimental evaluation of the effect of thread pitch on fatigue life of bolts[J]. International Journal of Fatigue, 2005, 27(2): 189-196. doi: 10.1016/j.ijfatigue.2004.06.011
    [15] RAHMAN N A, TIZANI W. Fatigue performance of blind bolt in concrete-filled hollow section[C]// Proceedings of 2013 4th International Conference on Information Technology for Manufacturing Systems (ITMS 2013 Ⅳ). Auckland: Trans Tech Publications Ltd., 2013: 5-10.
    [16] WANG H L, YIN H J, LIU K. Fatigue performance analysis of frictional type high strength bolts of overlapped joints[C]//13th International Conference on Fracture (ICF13). Beijing: Curran Associates, Inc., 2013: 2132-2137.
    [17] 张新鹏,张广泰,张辉亮,等. 螺旋流道水冷IGBT散热器数值模拟及试验研究[J]. 电力电子技术,2014,48(2): 71-73. doi: 10.3969/j.issn.1000-100X.2014.02.023

    ZHANG Xinpeng, ZHANG Guangtai, ZHANG Huiliang, et al. Numerical simulation and experimental research on spiral flow channel water-cooling IGBT radiator[J]. Power Electronics, 2014, 48(2): 71-73. doi: 10.3969/j.issn.1000-100X.2014.02.023
    [18] 中华人民共和国国家标准. 六角头螺栓: GB/T 5782—2016[S]. 北京: 中国标准出版社, 2016.
    [19] 中华人民共和国国家标准. 1型六角螺母: GB//T 6170—2015[S]. 北京: 中国标准出版社, 2016.
    [20] 中华人民共和国国家标准. 钢结构设计标准: GB 50017—2017[S]. 北京: 中国建筑工业出版社, 2017.
    [21] 赵丽滨,龙丽平,蔡庆云. 列车风致脉动力下声屏障的动力学性能[J]. 北京航空航天大学学报,2009,35(4): 505-508. doi: 10.13700/j.bh.1001-5965.2009.04.012

    ZHAO Libin, LONG Liping, CAI Qingyun. Dynamic properties of noise barrier structure subjected to train-induced impulsive wind pressure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(4): 505-508. doi: 10.13700/j.bh.1001-5965.2009.04.012
    [22] 屈爱平,高淑英. 梁-墩-桩基的动力特性研究[J]. 西南交通大学学报,2001,36(6): 641-644. doi: 10.3969/j.issn.0258-2724.2001.06.021

    QU Aiping, GAO Shuying. Vibration characteristics of a 3-dimensional beam-pier-pile system[J]. Journal of Southwest Jiaotong University, 2001, 36(6): 641-644. doi: 10.3969/j.issn.0258-2724.2001.06.021
  • 加载中
图(13) / 表(8)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  133
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-21
  • 修回日期:  2021-07-24
  • 网络出版日期:  2022-11-05
  • 刊出日期:  2021-08-05

目录

    /

    返回文章
    返回