Selection in Product Plan Alternatives Based on PPHoQ and Stochastic Variable
-
摘要:
为了以一种有效的方式反映客观环境的复杂性和备选方案工程特性值的分布特征,首先,结合产品规划质量屋(product planning house of quality,PPHoQ)的相关理论,客户代表使用区间型语言短语表征顾客需求的重要性,进而集结顾客需求与工程特性的关联度以及工程特性的自相关度,得到各项工程特性的重要度;其次,通过对备选方案工程特性目标值分布与最优值的差距分析,计算各个备选方案工程特性差距的总体分布期望值;进一步地,引入随机占优度的思想,构建备选方案两两比较的占优度矩阵;最后,依据工程特性的重要度、占优度矩阵和赋值优先关系矩阵,确定各个备选方案的综合评估指数. 将本文方法应用于某颚式破碎机的设计,项目团队确定了该产品的5项顾客需求和5项工程特性,通过基于产品规划质量屋和随机变量的优选方法对拟定的备选方案进行了选择,最终结果验证了所提方法的可行性.
Abstract:To reflect the complexity of real-life situation and to depict the distribution of engineering characteristic (EC) values associated with each alternative in an effective way, firstly, according to the theory of product planning house of quality (PPHoQ), interval linguistic variables are used by the customer representatives to describe their preferences over the customer requirements (CRs). The aggregation of the correlations between CRs and ECs and the autocorrelations of ECs yield the importance degrees of ECs. Secondly, the gaps between the target values and the optimal ones of ECs are analyzed to calculate the expectations of population distributions for alternative plans. Thirdly, the idea of stochastic dominance theory is introduced to construct the dominance matrix via pairwise comparisons between the alternatives. Finally, the comprehensive evaluation indexes of each alternative are determined as per the importance of ECs, the dominance matrix, and the assignment priority matrix. The proposed method is applied in the product development of jaw crushers, in which five CRs and five ECs are determined by the project team, and the alternatives are selected through the house of quality in product plan and stochastic variables. The outcome of the application validates the proposed approach.
-
表 1 备选方案目标值与最优值的差距分布
Table 1. Gaps between target values and the optimal ones for alternatives
备选方案 w1 w2 w3 w4 w5 y1 N(963,252) N(179,92) N(255,122) N(138,52) N(51781,1312) y2 N(936,252) N(164,92) N(264,122) N(151,52) N(52149,1312) y3 N(931,252) N(196,92) N(252,122) N(159,52) N(51653,1312) y4 N(955,252) N(168,92) N(258,122) N(145,52) N(51839,1312) y5 N(991,252) N(173,92) N(275,122) N(144,52) N(52096,1312) 表 2 各个备选方案差距值的累积概率分布
Table 2. Cumulative probability distribution of gaps for each alternative
期望值 y1 y2 y3 y4 y5 Eh,1 0.1557 0.2209 0.2342 0.1723 0.1292 Eh,2 0.1781 0.2817 0.1121 0.2558 0.2190 Eh,3 0.2418 0.2058 0.2545 0.2292 0.1659 Eh,4 0.3004 0.1907 0.1345 0.2211 0.2288 Eh,5 0.1995 0.1130 0.2173 0.1908 0.1232 表 3 工程特性
w1 的随机占优关系Table 3. Stochastic dominance with respect to
w1 备选方案 y1 y2 y3 y4 y5 y1 - - - ≻ y2 ≻ - ≻ ≻ y3 ≻ ≻ ≻ ≻ y4 ≻ - - ≻ y5 - - - - 表 4 产品规划备选方案在各项工程特性上的信息量
Table 4. Information contents of alternatives with respect to engineering characterisic
备选方案 w1 w2 w3 w4 w5 y1 0.171 - 0.126 - - y2 - - 0.167 - - y3 - - ∞ - - y4 0.175 - 0.143 - - y5 0.132 - ∞ - - -
[1] KAGAN E, LEIDER S, LOVEJOY W S. Ideation—execution transition in product development:an experimental analysis[J]. Management Science, 2018, 64(5): 2238-2262. doi: 10.1287/mnsc.2016.2709 [2] ALBRITTON M D, MCMULLEN P R. Optimal product design using a colony of virtual ants[J]. European Journal of Operational Research, 2007, 176(1): 498-520. doi: 10.1016/j.ejor.2005.06.042 [3] 陈以增,于齐. 基于博弈论的顾客需求权重确定方法[J]. 系统管理学报,2017,26(1): 196-199.CHEN Yizeng, YU Qi. A game thory-based approach to determining the weights of customer requirements[J]. Journal of Systems & Management, 2017, 26(1): 196-199. [4] CHAN L K, WU M L. A systematic approach to quality function deployment with a full illustrative example[J]. Omega, 2005, 33(2): 119-139. doi: 10.1016/j.omega.2004.03.010 [5] 耿秀丽,潘亚虹. 考虑用户体验的产品服务系统模块重要度判定方法[J]. 计算机集成制造系统,2020,26(5): 1295-1303.GENG Xiuli, PAN Yahong. Importance degree determination approach for product service system modules based on user experience[J]. Computer Integrated Manufacturing Systems, 2020, 26(5): 1295-1303. [6] LI Y L, DU Y F, CHIN K S. Determining the importance ratings of customer requirements in quality function deployment based on interval linguistic information[J]. International Journal of Production Research, 2018, 56(14): 4692-4708. doi: 10.1080/00207543.2017.1417650 [7] LUO X G, KWONG C K, TANG J F. Determining optimal levels of engineering characteristics in quality function deployment under multi-segment market[J]. Computers & Industrial Engineering, 2010, 59(1): 126-135. [8] BUTLER J, MORRICE D J, MULLARKEY P W. A multiple attribute utility theory approach to ranking and selection[J]. Management Science, 2001, 47(6): 800-816. doi: 10.1287/mnsc.47.6.800.9812 [9] KULAK O, KAHRAMAN C. Fuzzy multi-attribute selection among transportation companies using axiomatic design and analytic hierarchy process[J]. Information Sciences, 2005, 170(2/3/4): 191-210. [10] CHEN Z H, MING X G, WANG R C, et al. Selection of design alternatives for smart product service system: a rough-fuzzy data envelopment analysis approach[J]. Journal of Cleaner Production, 2020, 273: 122931.1-122931.19. doi: 10.1016/j.jclepro.2020.122931 [11] LAHDELMA R, SALMINEN P. Stochastic multicriteria acceptability analysis using the data envelopment model[J]. European Journal of Operational Research, 2006, 170(1): 241-252. doi: 10.1016/j.ejor.2004.07.040 [12] XU Z S. An interactive approach to multiple attribute group decision making with multigranular uncertain linguistic information[J]. Group Decision and Negotiation, 2009, 18(2): 119-145. doi: 10.1007/s10726-008-9131-0 [13] ZHAO N, XU Z S. Prioritized dual hesitant fuzzy aggregation operators based on t-norms and t-conorms with their applications in decision making[J]. Informatica, 2018, 29(3): 581-607. doi: 10.15388/Informatica.2018.183 [14] GASTELUM CHAVIRA D A, LEYVA LOPEZ J C, SOLANO NORIEGA J J, et al. A credit ranking model for a parafinancial company based on the ELECTRE-Ⅲ method and a multiobjective evolutionary algorithm[J]. Applied Soft Computing, 2017, 60: 190-201. doi: 10.1016/j.asoc.2017.06.021 期刊类型引用(15)
1. 陆粤,王铭,陈嵘,李小珍,王平. 基于行车平稳性的大跨度铁路桥梁成桥线形评价方法研究. 铁道标准设计. 2024(06): 44-51 . 百度学术
2. 张明金,周远洲,沈孔健,苑仁安,郑清刚. 常泰长江大桥主航道桥桥塔横向偏位及其控制方案研究. 桥梁建设. 2023(01): 1-8 . 百度学术
3. 黄春阳. 基于监测数据的独塔斜拉桥施工过程受力性能分析. 安徽建筑. 2023(04): 137-138+185 . 百度学术
4. 苑仁安,张明金,郑清刚,傅战工,喻济昇. 超大跨斜拉桥横桥向恒载非对称力学行为. 西南交通大学学报. 2023(03): 527-534 . 本站查看
5. 黄学漾. 双塔双索面异形塔柱斜拉桥施工控制关键技术探讨. 福建交通科技. 2023(06): 51-57 . 百度学术
6. 汪劲丰,杨松伟,亢阳阳,向华伟. 分阶段施工中钢箱梁制造参数的通用计算方法. 浙江大学学报(工学版). 2022(03): 550-557 . 百度学术
7. 李江刚,石建华,张巨生. 鳊鱼洲长江大桥南汊航道桥施工控制关键技术. 桥梁建设. 2022(04): 8-15 . 百度学术
8. 李鹏飞,王石磊,魏思聪,李毅,罗吉庆. 大型空间异形钢塔斜拉桥拉索张拉控制. 公路交通科技. 2022(10): 49-58 . 百度学术
9. 周仁忠,黄灿,郑建新. 福厦高铁泉州湾跨海大桥主桥施工控制关键技术. 桥梁建设. 2022(06): 131-139 . 百度学术
10. 黄继荣,马牛静,王荣辉,陈广韬. 叠合梁斜拉桥快速施工过程中主梁线形及索力调控精细化分析. 交通世界. 2022(36): 145-148 . 百度学术
11. 张飞,黄福云,王燕. V型墩刚构桥悬浇施工中应变修正与应力监测. 山东建筑大学学报. 2020(03): 36-41 . 百度学术
12. 廖贵星,严汝辉,胡辉跃,张燕飞,徐恭义. 武汉青山长江公路大桥中跨钢箱梁施工控制关键技术. 桥梁建设. 2020(S1): 126-132 . 百度学术
13. 高玉峰,杨永清,蒲黔辉,李晓斌. 桥梁施工监测控制理论及工程应用2019年度研究进展. 土木与环境工程学报(中英文). 2020(05): 98-105 . 百度学术
14. 董晓兵,余友江. 青海哇加滩黄河特大桥施工控制. 桥梁建设. 2019(04): 96-101 . 百度学术
15. 梅秀道,卢亦焱. 基于索长的大跨径斜拉桥施工控制计算方法及应用. 桥梁建设. 2019(06): 42-47 . 百度学术
其他类型引用(12)
-

计量
- 文章访问数: 322
- HTML全文浏览量: 167
- PDF下载量: 12
- 被引次数: 27