Calculation Method of Hertz Normal Contact Stiffness
-
摘要: 轮轨之间的弹性接触变形是车辆-轨道耦合动力学中计算轮轨力的核心,以基于Hertz接触理论的非线性接触刚度来描述轮轨之间的压缩量与轮轨法向力之间的关系. 目前的轮轨Hertz接触刚度计算公式为经验公式,来源于20世纪70年代英国铁路技术研究所的研究工作,分锥形踏面和磨耗型踏面两种类型,局限于特定的轮径范围和钢轨廓形. 基于三维弹性体Hertz接触理论,推导了满足Hertz接触条件的弹性体法向接触刚度通用计算公式,并结合轮轨几何外形特点,给出了轮轨接触斑大小及接触刚度参数的直接确定方法和数表,并以LM车轮踏面和CN60钢轨踏面匹配为例,对比分析了典型工况下计算结果与经验公式的差异. 分析结果表明:基于本文计算公式制定的Hertz弹性接触数表弥补了现有数表中缺乏接触刚度的不足,可直接用于弹性体接触计算;对于轮轨接触,与本文公式计算结果相比,以往经验公式中磨耗型踏面的接触常数计算结果仅在车轮名义中心圆弧与轨顶中心圆弧接触时的误差较小,约为0.40%~0.44%;其他接触位置时,经验公式计算结果与本文公式计算结果相差较大,误差范围可达 −25.97%~131.42%.Abstract: Elastic contact deformation between the wheel and rail is pivotal in the computation of the wheel-rail contact force in the vehicle-track coupled dynamics. Based on the Hertz contact theory, the nonlinear contact stiffness is used to depict the relation of the wheel-rail normal contact force and their relative compression. The current empirical formulas of the Hertz contact stiffness for the wheel-rail contact are based on the work of British Railway in 1970 s, and are classified into two categories, i.e., coned profile and worn profile. However, they are restricted to specific wheel radii and rail profiles. In this work, based on Hertz contact theory, the general formulas of the elastic normal contact stiffness are deduced, which can satisfy the Hertz contact conditions. According to the characteristics of the wheel-rail geometry, the dimension of wheel-rail contact spots and contact stiffness parameters are tabulated and determined. Finally, an example of LM wheel profile and CN60 rail profile is used to compare the results of the empirical formulas and those of the proposed formulas. The results show that the Hertz contact parameter table formed by the proposed contact formula makes up the absence of the contact stiffness in the current ones, and can be used directly in elastic contact calculation. When the circle around the nominal center of the wheel profile and the central circle of the rail head are in contact, the results calculated by empirical formulas have less error in the contact stiffness deviation of the worn tread, which varies in 0.40% − 0.44%. Otherwise, there is a significant difference between the results of empirical formulas and those of the proposed formulas, the range of which is −25.97% −131.42%.
-
Key words:
- Hertz contact /
- contact stiffness /
- contact ellipse /
- contact table /
- wheel/rail force
-
ZHAI Wanming. Vehicle-track coupled dynamics: theory and application[M]. Singapore: Science Press and Springer Nature Singapore Pte Ltd., 2020. 金学松, 刘启跃. 轮轨摩擦学[M]. 北京: 中国铁道出版社, 2004: 47-63. GOLDSMITH W. Impact: the theory and physical behavior of colliding solids[M]. New York: Dover Publications, Inc., 2001: 82-87. 张鹏,赵鑫,凌亮,等. 轮轨高频动力作用模拟中接触模型的影响分析[J]. 机械工程学报,2020,56(12): 124-132. doi: 10.3901/JME.2020.12.124ZHANG Peng, ZHAO Xin, LING Liang, et al. Influence of contact modeling on numerical analyses of high frequency wheel-rail interactions[J]. Journal of Mechanical Engineering, 2020, 56(12): 124-132. doi: 10.3901/JME.2020.12.124 徐井芒,王凯,高原,等. 高速铁路无缝钢轨断缝瞬态冲击行为分析[J]. 西南交通大学学报,2020,55(6): 1348-1354. doi: 10.3969/j.issn.0258-2724.20190312XU Jingmang, WANG Kai, GAO Yuan, et al. Transient impact behavior analysis of rail broken gap on high-speed continuous welded rail[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1348-1354. doi: 10.3969/j.issn.0258-2724.20190312 CHENG Gong, HE Yuanpeng, HAN Jian, et al. An investigation into the effects of modelling assumptions on sound power radiated from a high-speed train wheelset[J]. Journal of Sound and Vibration, 2021, 495: 115910.1-115910.20. JENKINS H H, STEPHENSON J E, CLAYTON G A, et al. The effect of track and vehicle parameters on wheel/rail vertical dynamic forces[J]. Railway Engineering Journal, 1974, 3(1): 2-16. 孙翔. 确定轮轨接触椭圆的直接方法[J]. 西南交通大学学报,1985(4): 8-21.SUN Xiang. A direct method to determine the wheel/rail contact ellipse[J]. Journal of Southwest Jiaotong University, 1985(4): 8-21. JOHNSON K L. Contact mechanics[M]. Cambridge: Cambridge University Press, 1985: 119-124. SHABANA A A, ZAAZAA K E, ESCALONA J L, et al. Development of elastic force model for wheel/rail contact problems[J]. Journal of Sound and Vibration, 2004, 269(1/2): 295-325. FLORES P, AMBROSIO J, CLARO J C P, et al. Influence of the contact-impact force model on the dynamic response of multi-body systems[J]. Proceedings of the Institution of Mechanical Engineering,Part K:Journal of Multi-Body Dynamics, 2006, 220(1): 21-34. doi: 10.1243/146441906X77722 SKRINJAR L, SLAVIC J, BOLTEZAR M. A review of continuous contact-force models in multibody dynamics[J]. International Journal of Mechanical Sciences, 2018, 145: 171-187. doi: 10.1016/j.ijmecsci.2018.07.010 HU S, GUO X. A dissipative contact force model for impact analysis in multibody dynamics[J]. Multibody System Dynamics, 2015, 35: 131-151. doi: 10.1007/s11044-015-9453-z ZHANG J, LI W, ZHAO L, et al. A continuous contact force model for impact analysis in multibody dynamics[J]. Mechanism and Machine Theory, 2020, 153: 103946.1-103946.25. ISMAIL K A, STRONGE W J. Impact of viscoplastic bodies:dissipation and restitution[J]. Journal of Applied Mechanics, 2008, 75: 061011-1-061011-5. YIGIT A S, CHRISTOFOROU A P, MAJEED M A. A nonlinear visco-elastoplastic impact model and the coefficient of restitution[J]. Nonlinear Dynamics, 2011, 66: 509-521. doi: 10.1007/s11071-010-9929-6 期刊类型引用(19)
1. 唐兆祥,许万涛,邓昊,卢文杰. 基于机会约束规划的含电动汽车市域铁路牵引供电系统优化运行. 储能科学与技术. 2024(02): 526-535 . 百度学术
2. 刘明亮,田忠北,董鸿志,郑俊锋,朱东坡. 考虑节能降耗的轨道牵引供电系统优化仿真模型. 自动化与仪器仪表. 2024(02): 82-86 . 百度学术
3. 李光耀,袁佳歆,甘栋良,杨爱民. 高铁新能源混合储能系统低碳经济优化运行研究. 电气工程学报. 2024(01): 67-78 . 百度学术
4. 赵丽颖,张灵芝,郑焕坤,龚事引. 考虑光伏和能量调度装置的电气化铁路储能运行调度. 东北电力大学学报. 2024(02): 51-57 . 百度学术
5. 李俊豪,涂春鸣,王鑫,郭祺,肖凡. 基于“规则+优化”的电气化铁路站点实时能量管控策略. 电工技术学报. 2024(11): 3339-3352 . 百度学术
6. 高锋阳,宋志翔,高建宁,高翾宇,杨凯文. 计及光伏和储能接入的牵引供电系统日前调度. 上海交通大学学报. 2024(05): 760-775 . 百度学术
7. 周萌,于龙,王子龙. “双碳”目标下电气化铁路源网车储关键技术研究. 电力电子技术. 2024(07): 80-85 . 百度学术
8. 王飞阳,陈玉新. 多维度融合发展策略下城市轨道交通碳排放测算模型. 市政技术. 2024(08): 130-135+161 . 百度学术
9. 康德建,胡亮,乔美林,杨步荣. 基于运行图优化的重载牵引负荷削峰策略研究. 电气化铁道. 2024(04): 82-85 . 百度学术
10. 秦浩庭,钟帆. 光伏接入铁路牵引供电系统谐振特性分析. 铁道标准设计. 2024(12): 169-175 . 百度学术
11. 陈冲,贾利民,赵天宇,邵晨虎,王扬慧. 光伏和储能植入铁路牵引供电系统的拓扑架构与控制策略研究综述. 电工技术学报. 2024(24): 7874-7901 . 百度学术
12. 刘继宗,张祖涛,王浩,孔苓吉,伊敏熠,朱忠尹. 城轨交通制动能量利用技术研究现状与展望. 西南交通大学学报. 2024(06): 1322-1345 . 本站查看
13. 陈民武,陈垠宇,徐烈,崔明建. 基于机会约束的贯通式同相牵引供电系统分布式优化运行策略. 中国电机工程学报. 2024(24): 9583-9594 . 百度学术
14. 董文哲,杨斯泐,梁宗佑,陈垠宇. 集成混合储能及RPC的牵引供电系统优化运行. 储能科学与技术. 2023(04): 1185-1193 . 百度学术
15. 周桔红,刘建委,殷杰,陈朝晖,贾沛,周海琦,冯玎,林圣. 地铁交流供电系统无功平衡策略研究——以广州地铁18号线为例. 都市快轨交通. 2023(03): 160-167 . 百度学术
16. 赵宏程,李再华,赖俊宏,陈垠宇,张波琦,龚康华,曾毅. 基于RPC的混合储能接入双流制牵引供电系统协调运行方法. 储能科学与技术. 2023(09): 2862-2870 . 百度学术
17. 陈垠宇,陈民武,李东阳,范家彬,梁宗佑,李波. 计及牵引负荷不确定性的同相供电系统随机优化运行策略. 中国铁道科学. 2023(05): 191-200 . 百度学术
18. 刘骆川,黄大锐. 牵引供电系统光储接入方案及其控制策略. 电工技术. 2023(18): 44-48 . 百度学术
19. 龚志恒,张翼扬,朱楚扬,赵鼎威,刘湘. 计及新能源接入的柔性牵引供电系统区间最优潮流研究. 电工技术. 2022(24): 48-52+57 . 百度学术
其他类型引用(19)
-