• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

钢轨波磨预测模型验证工况的研究

陈光雄

陈光雄. 钢轨波磨预测模型验证工况的研究[J]. 西南交通大学学报, 2022, 57(5): 1017-1023, 1054. doi: 10.3969/j.issn.0258-2724.20200842
引用本文: 陈光雄. 钢轨波磨预测模型验证工况的研究[J]. 西南交通大学学报, 2022, 57(5): 1017-1023, 1054. doi: 10.3969/j.issn.0258-2724.20200842
CHEN Guangxiong. Study on Validation Conditions of Rail Corrugation Prediction Models[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1017-1023, 1054. doi: 10.3969/j.issn.0258-2724.20200842
Citation: CHEN Guangxiong. Study on Validation Conditions of Rail Corrugation Prediction Models[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1017-1023, 1054. doi: 10.3969/j.issn.0258-2724.20200842

钢轨波磨预测模型验证工况的研究

doi: 10.3969/j.issn.0258-2724.20200842
基金项目: 国家自然科学资金(51775461)
详细信息
    作者简介:

    陈光雄(1962—),男,教授,博士,研究方向为摩擦学与车辆动力学,E-mail:chen_guangx@163.com

  • 中图分类号: V221.3

Study on Validation Conditions of Rail Corrugation Prediction Models

  • 摘要:

    钢轨波磨会降低乘坐舒适性,增大轨道结构伤损,甚至影响列车的安全运行. 为判断钢轨波磨预测模型的准确性,首先,基于钢轨波磨现场调研数据,统计地铁线路和干线铁路的钢轨波磨发生率;其次,针对现有钢轨波磨预测模型验证方法的局限性,同时结合钢轨波磨发生的规律性,提出预测模型验证的3种基本工况:线路曲线半径≤350 m时的内轨波磨和外轨波磨、曲线半径 ≥ 650 m时的非科隆蛋扣件曲线线路或者直线线路钢轨的波磨,并进行实例验证;最后,根据基于轮轨蠕滑力饱和情况,提出了一种快速预测钢轨波磨发生的新方法. 研究结果表明:现有的波磨预测模型验证工况缺乏一般性,大部分没有考虑线路曲线半径的影响,忽视了从新轨到波磨出现阶段的钢轨振动演变规律,造成通过验证的波磨预测模型预测准确率偏低;所提出的波磨快速预测方法准确率可达到85.00%.

     

  • 图 1  钢轨磨痕照片

    Figure 1.  Photographs of rail worn scars

    图 2  波磨预测的原理

    Figure 2.  Principle schematic for predicting rail corrugation

    图 3  蠕滑力饱和系数相对于曲线半径的变化

    Figure 3.  Variation of creep force saturation coefficient with radius of curved track

    图 4  轮轨系统摩擦耦合自激振动模型

    Figure 4.  Friction coupling self-excited vibration model ofwheelset-track system

    图 5  轮轨系统摩擦耦合自激振动

    Figure 5.  Friction coupling self-excited vibration ofwheelset-track system

  • [1] 钟掘, 蔡鹤皋, 郭东明, 等. 10000个科学难题——制造科学卷[M]. 北京: 科学出版社, 2018: 1194-1197
    [2] GRASSIE S L. Rail corrugation: characteristics, causes, and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(6): 581-596. doi: 10.1243/09544097JRRT264
    [3] SATO Y, MATSUMOTO A, KNOTHE K. Review on rail corrugation studies[J]. Wear, 2002, 253(1/2): 130-139.
    [4] OOSTERMEIJER K H. Review on short pitch rail corrugation studies[J]. Wear, 2008, 265(9/10): 1231-1237.
    [5] JIN X S, WEN Z F, ZHANG W H, et al. Numerical simulation of rail corrugation on a curved track[J]. Computers & Structures, 2005, 83(25/26): 2052-2065.
    [6] WANG Y R, WU T X. The growth and mitigation of rail corrugation due to vibrational interference between moving wheels and resilient track[J]. Vehicle System Dynamics, 2020, 58(8): 1257-1284. doi: 10.1080/00423114.2019.1616099
    [7] ZHANG H G, LIU W N, LIU W F, et al. Study on the cause and treatment of rail corrugation for Beijing metro[J]. Wear, 2014, 317(1/2): 120-128.
    [8] 任彤,王安斌,王志强,等. 小半径曲线段钢轨短波波磨的影响因素分析[J]. 噪声与振动控制,2018,38(6): 105-108,112. doi: 10.3969/j.issn.1006-1355.2018.06.020

    REN Tong, WANG Anbin, WANG Zhiqiang, et al. Analysis of influencing factors on rail corrugation in small radius curved tracks[J]. Noise and Vibration Control, 2018, 38(6): 105-108,112. doi: 10.3969/j.issn.1006-1355.2018.06.020
    [9] CHEN G X, ZHOU Z R, OUYANG H, et al. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system[J]. Journal of Sound and Vibration, 2010, 329(22): 4643-4655. doi: 10.1016/j.jsv.2010.05.011
    [10] 肖宏,陈鑫,赵越. 基于摩擦自激理论的单侧钢轨波磨机理分析[J]. 西南交通大学学报,2022,57(1): 83-89,119.

    XIAO Hong, CHEN Xin, ZHAO Yue. Analysis of unilateral rail corrugation mechanism based on friction self-excited theory[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 83-89,119.
    [11] BESHBICHI O E, WAN C, BRUNI S, et al. Complex eigenvalue analysis and parameters analysis to investigate the formation of railhead corrugation in sharp curves[J]. Wear, 2020, 450/451: 203150.1-203150.10.
    [12] FOURIE D, FRÖHLING R, HEYNS S. Railhead corrugation resulting from mode-coupling instability in the presence of veering modes[J]. Tribology International, 2020, 152: 106499.1-106499.12.
    [13] 陈光雄, 陈若茜, 闫硕, 等. 一种能够明显减少钢轨波磨的铁路车轮: 中国, CN107415575B[P]. 2020-05-15.
    [14] 刘志伟,刘建新,蔡久凤. 钢轨波磨激励下重载机车振动响应分析[J]. 噪声与振动控制,2020,40(5): 119-125. doi: 10.3969/j.issn.1006-1355.2020.05.020

    LIU Zhiwei, LIU Jianxin, CAI Jiufeng. Vibration response analysis of heavy haul locomotives excited by rail corrugation[J]. Noise and Vibration Control, 2020, 40(5): 119-125. doi: 10.3969/j.issn.1006-1355.2020.05.020
    [15] 王平,刘奕斌,高原,等. 表面选区强化对钢轨波磨处轮轨滚动接触行为的影响[J]. 铁道学报,2020,42(5): 105-112. doi: 10.3969/j.issn.1001-8360.2020.05.014

    WANG Ping, LIU Yibin, GAO Yuan, et al. A study on influence of surface strengthening on wheel-rail rolling contact behavior at rail corrugation[J]. Journal of the China Railway Society, 2020, 42(5): 105-112. doi: 10.3969/j.issn.1001-8360.2020.05.014
    [16] 金锋,肖宏,赵越,等. 重载铁路小半径曲线波磨演化过程实测分析[J]. 铁道标准设计,2021,65(5): 49-54.

    JIN Feng, XIAO Hong, ZHAO Yue, et al. Measurement and analysis of the evolution process of small radius curve corrugation in heavy haul railway[J]. Railway Standard Design, 2021, 65(5): 49-54.
    [17] 李响,任尊松,徐宁. 地铁小半径曲线段钢弹簧浮置板轨道的钢轨波磨研究[J]. 铁道学报,2017,39(8): 70-76. doi: 10.3969/j.issn.1001-8360.2017.08.010

    LI Xiang, REN Zunsong, XU Ning. Study on rail corrugation of steel spring floating slab track on subway with small radius curve track[J]. Journal of the China Railway Society, 2017, 39(8): 70-76. doi: 10.3969/j.issn.1001-8360.2017.08.010
    [18] 雷震宇,王志强,李莉,等. 地铁普通扣件钢轨波磨特性[J]. 同济大学学报(自然科学版),2019,47(9): 1334-1340. doi: 10.11908/j.issn.0253-374x.2019.09.014

    LEI Zhenyu, WANG Zhiqiang, LI Li, et al. Rail corrugation characteristics of the common fastener track in metro[J]. Journal of Tongji University (Natural Science), 2019, 47(9): 1334-1340. doi: 10.11908/j.issn.0253-374x.2019.09.014
    [19] 尧辉明,沈钢,高利君. 基于试验验证的磨耗型钢轨波磨形成机理[J]. 同济大学学报(自然科学版),2018,46(10): 1427-1432. doi: 10.11908/j.issn.0253-374x.2018.10.015

    YAO Huiming, SHEN Gang, GAO Lijun. Formation mechanism of worn profile rail corrugation based on experimental verification[J]. Journal of Tongji University (Natural Science), 2018, 46(10): 1427-1432. doi: 10.11908/j.issn.0253-374x.2018.10.015
    [20] 于淼. 高速铁路轨道-车辆系统高频瞬态仿真及波磨机理研究[D]. 北京: 中国铁道科学研究院, 2019.
    [21] TASSILLY E, VINCENT N. A linear model for the corrugation of rails[J]. Journal of Sound and Vibration, 1991, 150(1): 25-45. doi: 10.1016/0022-460X(91)90400-E
    [22] HEMPELMANN K, KNOTHE K. An extended linear model for the prediction of short pitch corrugation[J]. Wear, 1996, 191(1/2): 161-169.
    [23] IGELAND A, ILIAS H. Rail head corrugation growth predictions based on non-linear high frequency vehicle/track interaction[J]. Wear, 1997, 213(1/2): 90-97.
    [24] SUDA Y, HANAWA M, OKUMURA M, et al. Study on rail corrugation in sharp curves of commuter line[J]. Wear, 2002, 253(1/2): 193-198.
    [25] TORSTENSSON P T, SCHILKE M. Rail corrugation growth on small radius curves—measurements and validation of a numerical prediction model[J]. Wear, 2013, 303(1/2): 381-396.
    [26] HIENSCH M, NIELSEN J C O, VERHEIJEN E. Rail corrugation in The Netherlands—measurements and simulations[J]. Wear, 2002, 253(1/2): 140-149.
    [27] TASSILLY E, VINCENT N. Rail corrugations: analytical model and field tests[J]. Wear, 1991, 144(1/2): 163-178.
    [28] CORREA N, VADILLO E G, SANTAMARIA J, et al. A versatile method in the space domain to study short-wave rail undulatory wear caused by rail surface defects[J]. Wear, 2016, 352/353: 196-208. doi: 10.1016/j.wear.2016.02.012
    [29] 陈光雄,崔晓璐,王科. 高速列车车轮踏面非圆磨耗机理[J]. 西南交通大学学报,2016,51(2): 244-250. doi: 10.3969/j.issn.0258-2724.2016.02.004

    CHEN Guangxiong, CUI Xiaolu, WANG Ke. Generation mechanism for plolygonalization of wheel treads of high-speed trains[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 244-250. doi: 10.3969/j.issn.0258-2724.2016.02.004
  • 加载中
图(5)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  195
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-22
  • 修回日期:  2021-06-09
  • 网络出版日期:  2022-08-13
  • 刊出日期:  2021-09-08

目录

    /

    返回文章
    返回