• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于FFRLS的多堆燃料电池系统功率分配方法

梁建英 陈维荣

梁建英, 陈维荣. 基于FFRLS的多堆燃料电池系统功率分配方法[J]. 西南交通大学学报, 2022, 57(4): 722-728, 782. doi: 10.3969/j.issn.0258-2724.20200795
引用本文: 梁建英, 陈维荣. 基于FFRLS的多堆燃料电池系统功率分配方法[J]. 西南交通大学学报, 2022, 57(4): 722-728, 782. doi: 10.3969/j.issn.0258-2724.20200795
LIANG Jianying, CHEN Weirong. Power Distribution Method of Multi-Stack Fuel Cell System Based on Forgetting Factor Recursive Least Square[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 722-728, 782. doi: 10.3969/j.issn.0258-2724.20200795
Citation: LIANG Jianying, CHEN Weirong. Power Distribution Method of Multi-Stack Fuel Cell System Based on Forgetting Factor Recursive Least Square[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 722-728, 782. doi: 10.3969/j.issn.0258-2724.20200795

基于FFRLS的多堆燃料电池系统功率分配方法

doi: 10.3969/j.issn.0258-2724.20200795
基金项目: 国家自然科学基金(2077180)
详细信息
    作者简介:

    梁建英(1972—),女,教授级高级工程师,博士,研究方向为轨道交通装备、新能源技术,E-mail:1120160058@qq.com

    通讯作者:

    陈维荣(1965—),男,教授,博士,博士生导师,研究方向为铁道电气化、供电监控技术以及燃料电池发电技术等,E-mail:wrchen@swjtu.edu.cn

  • 中图分类号: TM911.4

Power Distribution Method of Multi-Stack Fuel Cell System Based on Forgetting Factor Recursive Least Square

  • 摘要:

    为减小多堆燃料电池系统 (multi-stack fuel cell system, MFCS)中单体燃料电池运行期间输出功率的大范围变化,提高MFCS平均效率,以保证各燃料电池长期稳定运行,针对大功率质子交换膜燃料电池 (proton exchange membrane fuel cell,PEMFC)系统,提出了一种基于遗忘因子递推最小二乘 (forgetting factor recursive least square,FFRLS)在线辨识地改进链式功率分配方法. 该方法利用FFRLS算法的实时在线辨识能力估算运行中的每个燃料电池最大效率范围 (maximum efficiency range,MER),并将其边界值作为约束参考值实时更新链式功率的限定区间;然后,依据负载需求功率变化和各燃料电池效率高低顺序分配各电堆出力;最后,在搭建的RT-LAB半实物平台上进行试验分析. 试验结果表明:与平均功率分配和传统链式功率分配方法相比,本文所提方法对MFCS效率分别提高了0.93%和1.95%.

     

  • 图 1  多堆燃料电池系统结构

    PWM—pulse width modulation

    Figure 1.  Multi-stack fuel cell system structure

    图 2  燃料电池极化曲线

    Figure 2.  Fuel cell polarization curve

    图 3  燃料电池系统效率-功率曲线

    Figure 3.  Fuel cell system efficiency-power curves

    图 4  改进链式功率分配算法结构

    Figure 4.  Structure of improved chain power distribution algorithm

    图 5  半实物平台

    Figure 5.  Semi-physical platform

    图 6  平均功率分配方法

    Figure 6.  Average power distribution method

    图 7  平均功率分配的多堆燃料电池系统效率

    Figure 7.  Efficiency of multi-stack fuel cell system for average power distribution

    图 8  传统链式功率分配方法

    Figure 8.  Traditional chain power distribution method

    图 9  传统链式功率的多堆燃料电池系统效率

    Figure 9.  Efficiency of multi-stack fuel cell system for traditional chain power distribution

    图 10  PEMFC系统效率和功率

    Figure 10.  PEMFC system efficiency and power

    图 11  基于在线辨识的改进链式功率分配方法

    Figure 11.  Improved chain power distribution method based on online identification

    图 12  多堆燃料电池系统效率

    Figure 12.  Efficiency of multi-stack fuel cell system for Improved chain power distribution

    表  1  PEMFC电堆参数

    Table  1.   PEMFC stack parameters

    参数取值
    额定功率/kW110
    额定电流/A238
    电压范围/V480 ~ 660
    氢气压力/MPa0.8
    冷却液温度/℃50 ~ 75
    下载: 导出CSV

    表  2  3种功率分配方法下MFCS效率变化

    Table  2.   Changes in MFCS efficiency under three power distribution methods %

    分配方法平均效率最大效率最小效率
    改进链式49.9152.4345.82
    平均48.9852.5643.76
    传统链式47.9650.1245.91
    下载: 导出CSV
  • [1] 陈维荣,钱清泉,李奇. 燃料电池混合动力列车的研究现状与发展趋势[J]. 西南交通大学学报,2009,44(1): 1-6. doi: 10.3969/j.issn.0258-2724.2009.01.001

    CHEN Weirong, QIAN Qingquan, LI Qi. Investigation status and development trend of hybrid power train based on fuel cell[J]. Journal of Southwest Jiaotong University, 2009, 44(1): 1-6. doi: 10.3969/j.issn.0258-2724.2009.01.001
    [2] 李奇,孟翔,陈维荣,等. 燃料电池混合动力系统参数匹配与多目标优化[J]. 西南交通大学学报,2019,54(5): 1079-1086. doi: 10.3969/j.issn.0258-2724.20170117

    LI Qi, MENG Xiang, CHEN Weirong, et al. Parameter matching and multi-objective optimization of fuel cell hybrid system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1079-1086. doi: 10.3969/j.issn.0258-2724.20170117
    [3] JOSHI M C, SAMANTA S. Improved energy management algorithm with time-share-based ultracapacitor charging/discharging for hybrid energy storage system[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6032-6043. doi: 10.1109/TIE.2018.2871799
    [4] LI H, RAVEY A, N’DIAYE A, et al. Equivalent consumption minimization strategy for hybrid electric vehicle powered by fuel cell, battery and super- capacitor[C]//IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society. Florence: IEEE, 2016: 4401-4406.
    [5] ZHAI W M, CAI C B. Train/track/bridge dynamic interactions:simulation and applications[J]. Vehicle System Dynamics, 2002, 37(S1): 653-665.
    [6] 徐茂峻,肖壮,毛畅海,等. 关于储能式有轨电车节能优化控制研究[J]. 计算机仿真,2019,36(2): 88-94. doi: 10.3969/j.issn.1006-9348.2019.02.020

    XU Maojun, XIAO Zhuang, MAO Changhai, et al. Energy efficient optimization of multiple intervals for energy storage tram[J]. Computer Simulation, 2019, 36(2): 88-94. doi: 10.3969/j.issn.1006-9348.2019.02.020
    [7] ETTIHIR K, BOULON L, AGBOSSOU K. Optimization-based energy management strategy for a fuel cell/battery hybrid power system[J]. Applied Energy, 2016, 163: 142-153. doi: 10.1016/j.apenergy.2015.10.176
    [8] WANG T H, LI Q, YIN L Z, et al. Hydrogen consumption minimization method based on the online identification for multi-stack PEMFCs system[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5074-5081. doi: 10.1016/j.ijhydene.2018.09.181
    [9] HAN X, LI F Q, ZHANG T, et al. Economic energy management strategy design and simulation for a dual-stack fuel cell electric vehicle[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11584-11595. doi: 10.1016/j.ijhydene.2017.01.085
    [10] BODDU S, AGARWAL V. Maximum power extraction from series-connected fuel cell stacks by the current compensation technique[J]. IEEE Transactions on Power Electronics, 2015, 30(2): 582-589. doi: 10.1109/TPEL.2014.2311323
    [11] 黄文强,李奇,陈维荣,等. 基于制动速度优化策略的新型供电方式 有轨电车再生制动能量回收方法[J]. 中国电机工程学报,2019,39(18): 5406-5414.

    HUANG Wenqiang, LI Qi, CHEN Weirong, et al. Fuel cell tram regenerative braking energy recovery method based on braking speed optimization strategy[J]. Proceedings of the CSEE, 2019, 39(18): 5406-5414.
    [12] HONG Z H, LI Q, HAN Y, et al. An energy management strategy based on dynamic power factor for fuel cell/battery hybrid locomotive[J]. International Journal of Hydrogen Energy, 2018, 43(6): 3261-3272. doi: 10.1016/j.ijhydene.2017.12.117
    [13] 陈维荣,刘嘉蔚,李奇,等. 质子交换膜燃料电池故障诊断方法综述及展望[J]. 中国电机工程学报,2017,37(16): 4712-4721,4896.

    CHEN Weirong, LIU Jiawei, LI Qi, et al. Review and prospect of fault diagnosis methods for proton exchange membrane fuel cell[J]. Proceedings of the CSEE, 2017, 37(16): 4712-4721,4896.
    [14] LI Q, CHEN W R, LIU Z X, et al. Development of energy management system based on a power sharing strategy for a fuel cell-battery-supercapacitor hybrid tramway[J]. Journal of Power Sources, 2015, 279: 267-280. doi: 10.1016/j.jpowsour.2014.12.042
    [15] FEROLDI D, SERRA M, RIERA J. Performance improvement of a PEMFC system controlling the cathode outlet air flow[J]. Journal of Power Sources, 2007, 169(1): 205-212. doi: 10.1016/j.jpowsour.2007.01.053
    [16] 徐梁飞,华剑锋,包磊,等. 燃料电池混合动力客车等效氢耗优化策略[J]. 中国公路学报,2009,22(1): 104-108. doi: 10.3321/j.issn:1001-7372.2009.01.017

    XU Liangfei, HUA Jianfeng, BAO Lei, et al. Optimized strategy on equivalent hydrogen consumption for fuel cell hybrid electric bus[J]. China Journal of Highway and Transport, 2009, 22(1): 104-108. doi: 10.3321/j.issn:1001-7372.2009.01.017
    [17] 梁枫,秦斌,王欣,等. 基于粒子群算法的地铁列车节能运行优化[J]. 湖南工业大学学报,2016,30(6): 29-33. doi: 10.3969/j.issn.1673-9833.2016.06.006

    LIANG Feng, QIN Bin, WANG Xin, et al. Optimization of energy saving operation for metro trains based on particle swarm optimization[J]. Journal of Hunan University of Technology, 2016, 30(6): 29-33. doi: 10.3969/j.issn.1673-9833.2016.06.006
    [18] SU Shuo, LI Kepeng, SU Shuai, et al. Energy-efficient train driving strategy considering the on-board energy storage[J]. IOP Conference Series: Materials Science and Engineering, 2018, 392: 062115.1-062115.6. doi: 10.1088/1757-899X/392/6/062115
    [19] 尹良震,李奇,洪志湖,等. PEMFC发电系统FFRLS在线辨识和实时最优温度广义预测控制方法[J]. 中国电机工程学报,2017,37(11): 3223-3235,3378.

    YIN Liangzhen, LI Qi, HONG Zhihu, et al. FFRLS online identification and real-time optimal temperature generalized predictive control method of PEMFC power generation system[J]. Proceedings of the CSEE, 2017, 37(11): 3223-3235,3378.
    [20] YANG Y P, LIU Z W, WANG F C. An application of indirect model reference adaptive control to a low-power proton exchange membrane fuel cell[J]. Journal of Power Sources, 2008, 179(2): 618-630. doi: 10.1016/j.jpowsour.2008.01.053
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  283
  • HTML全文浏览量:  108
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-20
  • 修回日期:  2021-03-21
  • 刊出日期:  2021-05-14

目录

    /

    返回文章
    返回