• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

车辆运行品质的智能手机检测方法及姿态误差矫正

陈嵘 从建力 高鸣源 王源 王平

陈嵘, 从建力, 高鸣源, 王源, 王平. 车辆运行品质的智能手机检测方法及姿态误差矫正[J]. 西南交通大学学报, 2022, 57(4): 830-839. doi: 10.3969/j.issn.0258-2724.20200756
引用本文: 陈嵘, 从建力, 高鸣源, 王源, 王平. 车辆运行品质的智能手机检测方法及姿态误差矫正[J]. 西南交通大学学报, 2022, 57(4): 830-839. doi: 10.3969/j.issn.0258-2724.20200756
CHEN Rong, CONG Jianli, GAO Mingyuan, WANG Yuan, WANG Ping. Using Smartphone to Detect Vehicle Running Quality and Its Coordinate Alignment[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 830-839. doi: 10.3969/j.issn.0258-2724.20200756
Citation: CHEN Rong, CONG Jianli, GAO Mingyuan, WANG Yuan, WANG Ping. Using Smartphone to Detect Vehicle Running Quality and Its Coordinate Alignment[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 830-839. doi: 10.3969/j.issn.0258-2724.20200756

车辆运行品质的智能手机检测方法及姿态误差矫正

doi: 10.3969/j.issn.0258-2724.20200756
基金项目: 国家自然科学基金(51778542,52008198)
详细信息
    作者简介:

    陈嵘(1981—),男,教授,博士,研究方向为高速重载轨道结构及轨道动力学,E-mail:chenrong@home.swjtu.edu.cn

  • 中图分类号: U216.4

Using Smartphone to Detect Vehicle Running Quality and Its Coordinate Alignment

  • 摘要:

    因车体坐标系统和手机坐标系统存在角度偏差,为使手机检测数据真实反映车体振动加速度,提出针对手机姿态误差的系统性矫正方法. 该方法以重力方向为基准矫正手机垂向加速度,借助车体横、纵向加速度的正交性矫正手机水平向加速度,并基于极大似然估计原理评估角度偏差,保证手机姿态矫正的可靠性. 结合现场测试结果表明:两部智能手机检测数据经姿态误差矫正得到以重力方向为基准的垂向角度修正值分别为0.008° 和0.007°,两者水平夹角为29.75°,与试验放置夹角30.00° 偏差0.25°;智能手机与高精度传感器检测的车体加速度在时域和频域的幅值、主频均一致.

     

  • 图 1  智能手机检测车体加速度研究路线

    Figure 1.  Route of car body acceleration detected by smartphones

    图 2  车辆坐标系与手机坐标系

    Figure 2.  Vehicle and smartphone coordinate systems

    图 3  垂向姿态偏差示意

    Figure 3.  Deviation of vertical coordinates

    图 4  手机坐标系与车体坐标系角度偏差示意

    Figure 4.  Angle deviation between smartphone and car body coordinate systems

    图 5  车体坐标系与手机坐标系的偏差

    Figure 5.  Deviation between smartphone and car body coordinate systems

    图 6  ${W}_{{\rm{d}}}\mathrm{、}{W}_{{\rm{b}}}$频率计权曲线

    Figure 6.  ${W}_{{\rm{d}}}$and ${W}_{{\rm{b}}}$frequency weighting curve

    图 7  现场测试

    Figure 7.  Field tests

    图 8  原始检测数据

    Figure 8.  Raw data

    图 9  原始静止数据

    Figure 9.  Raw static data

    图 10  垂向姿态修正

    Figure 10.  Vertical coordinate alignment

    图 11  偏差角的极大似然估计

    Figure 11.  Maximum likelihood estimation of deviation angle

    图 12  车体横向、纵向加速度矫正前、后对比

    Figure 12.  Lateral and longitudinal accelerations before and after coordinate alignment

    图 13  手机传感器精度验证试验

    Figure 13.  Accuracy verification tests of smartphone and sensor

    图 14  智能手机与高精度传感器测试数据

    Figure 14.  Detection data of smartphone and high-precision sensor

    图 15  智能手机与高精度传感器检测数据有效均方根值

    Figure 15.  Root mean square of detection data from smartphone and high-precision sensor

    图 16  智能手机与高精度传感器检测数据功率谱密度

    Figure 16.  Power spectral density of detection data from smartphone and high-precision sensor

    图 17  某地铁区间UIC513舒适性指标

    Figure 17.  UIC513 comfort index of metro section

    表  1  UIC513舒适度等级划分

    Table  1.   UIC513 comfort level classification

    舒适度划分等级指标取值评定结果
    一级$I_{\mathrm{R}\mathrm{C}\mathrm{I}} < 1.0$非常舒适
    二级$1.0 \leqslant I_{\mathrm{R}\mathrm{C}\mathrm{I} } < 2.0$舒适
    三级$2.0 \leqslant I_{\mathrm{R}\mathrm{C}\mathrm{I} } < 4.0$还算舒适
    四级$4.0 \leqslant I_{\mathrm{R}\mathrm{C}\mathrm{I} } < 5.0$不舒适
    五级$I_{\mathrm{R}\mathrm{C}\mathrm{I} }\geqslant5.0$非常不舒适
    下载: 导出CSV

    表  2  手机姿态修正角度

    Table  2.   Smartphone cooridinate alignment angle

    手机编号垂向修正角/(o水平向修正角/(o
    1 0.008 −29.750
    2 0.007 30.500
    下载: 导出CSV

    表  3  智能手机与高精度传感器重要参数

    Table  3.   Main parameters of smartphone and high-precision sensor

    精密传感器智能手机
    项目参数或型号项目参数或型号
    型号891-Ⅱ型拾振器操作系统Android 4.4
    数据采集
    设备
    东方所
    Coinv DASP V11
    芯片Qualcomm MSM8274AB Snapdragon 800
    电源12 V 移动电源CPU
    GPU
    Tegra4 1.8 GHz
    Adreno 330
    采样频率100 Hz采样频率100 Hz
    其他桥盒及连接线内存2 GB RAM
    下载: 导出CSV
  • [1] WANG Y, CONG J L, WANG P, et al. A data-fusion approach for speed estimation and location calibration of a metro train based on low-cost sensors in smartphones[J]. IEEE Sensors Journal, 2019, 19(22): 10744-10752.
    [2] WANG P, WANG Y, WANG L, et al. Measurement of carbody vibration in urban rail tril transtit using smartphones[C]//Transportation Research Board 96th Annual Meeting. Washington D C: [s.n.], 2017: 1-15
    [3] JOHANNING E, FISCHER S, CHRIST E, et al. Whole-body vibration exposure study in US railroad locomotives—an ergonomic risk assessment[J]. AIHA Journal, 2002, 63(4): 439-446. doi: 10.1080/15428110208984732
    [4] LEE J S, CHOI S, KIM S S, et al. A mixed filtering approach for track condition monitoring using accelerometers on the axle box and bogie[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(3): 749-758. doi: 10.1109/TIM.2011.2170377
    [5] WANG Y T, QIN Y, WEI X K. Track irregularities estimation based on acceleration measurements[C]//Proceedings of 2012 International Conference on Measurement, Information and Control. Harbin: IEEE, 2012: 83-87.
    [6] TSUNASHIMA H, KOJIMA T, MARUMO Y, et al. Condition monitoring of railway track and driver using in-service vehicle[C]//4th IET International Conference on Railway Condition Monitoring. Derby: IEE, 2008: 1-6
    [7] LEDERMAN G, CHEN S H, GARRETT J H, et al. Track monitoring from the dynamic response of a passing train:a sparse approach[J]. Mechanical Systems and Signal Processing, 2017, 90: 141-153. doi: 10.1016/j.ymssp.2016.12.009
    [8] GAO M Y, CONG J L, XIAO J L, et al. Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport[J]. Applied Energy, 2020, 257: 113969.1-113969.19.
    [9] GAO M Y, SU C G, CONG J L, et al. Harvesting thermoelectric energy from railway track[J]. Energy, 2019, 180: 315-329. doi: 10.1016/j.energy.2019.05.087
    [10] WANG Y, WANG P, WANG X, et al. Position synchronization for track geometry inspection data via big-data fusion and incremental learning[J]. Transportation Research Part C:Emerging Technologies, 2018, 93: 544-565. doi: 10.1016/j.trc.2018.06.018
    [11] SONG C, WU J, LIU M, et al. RESen: sensing and evaluating the riding experience based on crowdsourcing by smartphones[C]//2012 8th International Conference on Mobile Ad-hoc and Sensor Networks. Chengdu: IEEE, 2012: 147-152.
    [12] HERRERA J C, WORK D B, HERRING R, et al. Evaluation of traffic data obtained via GPS-nabled mobile phones:the Mobile Century field experi-ment[J]. Transportation Research Part C:Emerging Technologies, 2010, 18(4): 568-583. doi: 10.1016/j.trc.2009.10.006
    [13] WANG Y, CHEN Y J, YANG J, et al. Determining driver phone use by exploiting smartphone integrated sensors[J]. IEEE Transactions on Mobile Computing, 2016, 15(8): 1965-1981. doi: 10.1109/TMC.2015.2483501
    [14] 从建力,王源,杨翠平,等. 智能手机检测车辆振动加速度数据预处理方法[J]. 数据采集与处理,2019,34(2): 349-357.

    CONG Jianli, WANG Yuan, YANG Cuiping, et al. Data preprocessing method of vehicle vibration acceleration by smartphone[J]. Journal of Data Acquisition and Processing, 2019, 34(2): 349-357.
    [15] 罗林, 张格明, 吴旺青, 等. 轮轨系统轨道平顺状态的控制[M]. 北京: 中国铁道出版社, 2006.
    [16] KIM Y G, KWON H B, KIM S W, et al. Correlation of ride comfort evaluation methods for railway vehicles[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2003, 217(2): 73-88. doi: 10.1243/095440903765762823
    [17] 铁道部科学研究院机车车辆研究所. 高速试验列车动力车强度及动力学性能规范: 95J01-L[S]. 北京: 铁道出版社, 2019
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  128
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09
  • 修回日期:  2021-05-17
  • 刊出日期:  2021-09-07

目录

    /

    返回文章
    返回