• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于频域平稳性的高速机车悬挂参数优化匹配

姚远 任铖铭 陈相旺 刘晓雪

姚远, 任铖铭, 陈相旺, 刘晓雪. 基于频域平稳性的高速机车悬挂参数优化匹配[J]. 西南交通大学学报, 2022, 57(6): 1259-1267. doi: 10.3969/j.issn.0258-2724.20200753
引用本文: 姚远, 任铖铭, 陈相旺, 刘晓雪. 基于频域平稳性的高速机车悬挂参数优化匹配[J]. 西南交通大学学报, 2022, 57(6): 1259-1267. doi: 10.3969/j.issn.0258-2724.20200753
YAO Yuan, REN Chengming, CHEN Xiangwang, LIU Xiaoxue. Suspension Parameters Optimum Matching of High-Speed Locomotive Based on Frequency Domain Stationarity[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1259-1267. doi: 10.3969/j.issn.0258-2724.20200753
Citation: YAO Yuan, REN Chengming, CHEN Xiangwang, LIU Xiaoxue. Suspension Parameters Optimum Matching of High-Speed Locomotive Based on Frequency Domain Stationarity[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1259-1267. doi: 10.3969/j.issn.0258-2724.20200753

基于频域平稳性的高速机车悬挂参数优化匹配

doi: 10.3969/j.issn.0258-2724.20200753
基金项目: 国家重点研发计划(2018YFB1201703,2018YFB1201902);四川省自然科学基金(2022NSFSC0034);国铁集团科研开发计划(N2021J028,N2020J026)
详细信息
    作者简介:

    姚远(1983—),研究员,博士,研究方向为机车车辆设计理论和车辆系统动力学,E-mail: yyuan@swjtu.edu.cn

  • 中图分类号: U260.11;U260.341

Suspension Parameters Optimum Matching of High-Speed Locomotive Based on Frequency Domain Stationarity

  • 摘要:

    为合理优化匹配悬挂参数以提升高速机车动力学性能,针对某高速机车,采用虚拟激励法计算频域横向平稳性指标,提出了考虑频域横向平稳性和稳定性多目标性能的关键悬挂参数多参数协同优化方法;分别以2种抗蛇行减振器布置方式和3种轮轨接触状态运行工况为例,验证了该方法对机车横向动力学性能的提升效果. 结果表明:低轮轨接触锥度工况机车一次蛇行稳定性较差,尤其采用抗蛇行减振器斜对称布置方式,机车后司机室横向平稳性显著变差;对于低锥度工况,需以提高机车稳定性为优化目标,而高锥度工况则更需关注其横向平稳性;为兼顾不同轮轨接触条件下机车动力学性能,以提高线路适应性,机车一系纵向刚度、抗蛇行减振器阻尼和二系横向减振器阻尼值在文中给定的优化范围内应尽量选取较小值,建议分别选取12 kN/mm、600 kN·s/m和25 kN·s/m.

     

  • 图 1  机车横向动力学模型

    Figure 1.  Lateral dynamics model of locomotive

    图 2  抗蛇行减振器两种布置方式

    Figure 2.  Two arrangement modes of yaw damper

    图 3  动力学性能多目标优化Pareto前沿

    Figure 3.  Pareto frontier of multi-objective optimization

    图 4  最优悬挂参数分布(mode 1)

    Figure 4.  Distribution of optimal parameters (mode 1)

    图 5  最优悬挂参数分布(mode 2)

    Figure 5.  Distribution of optimal parameters (mode 2)

    图 6  符合条件的悬挂参数匹配

    Figure 6.  Suspension parameters matching rules

    图 7  悬挂参数与ζmax相关性

    Figure 7.  Correlation between suspension parameters and ζmax

    表  1  模型部分参数

    Table  1.   Partial parameters of model

    参数符号数值
    速度V/(km·h−1160
    新轮轨接触等效锥度λ0.1
    轴重Ld/t19.5
    轴距b/m2.8
    车辆定距l/m10.2
    车体质量mc/t42
    转向架质量mb/t18
    电机质量md/t3.5
    转向架单侧二系横向刚度ksy/(kN·mm−10.24
    下载: 导出CSV

    表  2  悬挂参数优化范围

    Table  2.   Optimization range of suspension parameters

    参数优化范围
    kpx/ (kN·mm−112 ~ 100
    kpy/ (kN·mm−12 ~ 8
    csx/ (kN·s·m−1300 ~ 2000
    csy/ (kN·s·m−110 ~ 60
    kncsx/(kN·mm−110 ~ 25
    α/(°)0 ~ 10
    下载: 导出CSV

    表  3  横向动力学性能指标阀值

    Table  3.   Threshold of dynamic performance index

    λζmaxWfWb
    0.05≤−0.10≤2.5≤2.5
    0.30[−0.25, −0.16]≤2.5≤2.5
    0.60[−0.25, −0.16]≤2.5≤2.5
    下载: 导出CSV

    表  4  悬挂参数、WfWb的相关系数

    Table  4.   Correlation coefficients of suspension parameters and Wf with Wb

    modeWfkpxkpycsxcsykncsxα
    10.900.31−0.250.240.880.08−0.12
    20.810.25−0.290.280.830.150.01
    下载: 导出CSV
  • [1] BRAGHIN F, BRUNI S, RESTA F. Active yaw damper for the improvement of railway vehicle stability and curving performances: simulations and experimental results[J]. Vehicle System Dynamics, 2006, 44(11): 857-869. doi: 10.1080/00423110600733972
    [2] YAO Y, LI G, SARDAHI Y, et al. Stability enhancement of a high-speed train bogie using active mass inertial actuators[J]. Vehicle System Dynamics, 2019, 57(3): 389-407. doi: 10.1080/00423114.2018.1469776
    [3] YAO Y, WU G S, SARDAHI Y, et al. Hunting stability analysis of high-speed train bogie under the frame lateral vibration active control[J]. Vehicle System Dynamics, 2018, 56(2): 297-318. doi: 10.1080/00423114.2017.1375128
    [4] JIANG J Z, MATAMOROS-SANCHEZ A Z, GOODALL R M, et al. Passive suspensions incorporating inerters for railway vehicles[J]. Vehicle System Dynamics, 2012, 50(S1): 263-276. doi: 10.1080/00423114.2012.665166
    [5] 金天贺,刘志明,任尊松,等. 高速列车半主动悬挂可变刚度和阻尼减振器适应性研究[J]. 振动工程学报,2020,33(4): 772-783. doi: 10.16385/j.cnki.issn.1004-4523.2020.04.016

    JIN Tianhe, LIU Zhiming, REN Zunsong, et al. Adaptability of variable stiffness and damping shock absorber for semi-active suspension of high speed train[J]. Journal of Vibration Engineering, 2020, 33(4): 772-783. doi: 10.16385/j.cnki.issn.1004-4523.2020.04.016
    [6] 李响,任尊松,徐宁. 基于转向架悬挂参数与踏面锥度优化的高速车辆动力学性能分析[J]. 铁道学报,2018,40(3): 39-44. doi: 10.3969/j.issn.1001-8360.2018.03.006

    LI Xiang, REN Zunsong, XU Ning. Dynamic performance analysis of high-speed vehicle based on optimization of bogie suspension parameters and tread conicity[J]. Journal of the China Railway Society, 2018, 40(3): 39-44. doi: 10.3969/j.issn.1001-8360.2018.03.006
    [7] YAO Y, LI G, WU G S, et al. Suspension parameters optimum of high-speed train bogie for hunting stability robustness[J]. International Journal of Rail Transportation, 2020, 8(3): 195-214. doi: 10.1080/23248378.2019.1625824
    [8] HE Y P, MCPHEE J. Multidisciplinary optimization of multibody systems with application to the design of rail vehicles[J]. Multibody System Dynamics, 2005, 14(2): 111-135. doi: 10.1007/s11044-005-4310-0
    [9] JOHNSSON A, BERBYUK V, ENELUND M. Pareto optimisation of railway bogie suspension damping to enhance safety and comfort[J]. Vehicle System Dynamics, 2012, 50(9): 1379-1407. doi: 10.1080/00423114.2012.659846
    [10] MOUSAVI-BIDELEH S M, BERBYUK V. Multi-objective optimisation of bogie suspension to boost speed on curves[J]. Vehicle System Dynamics, 2016, 54(1): 58-85. doi: 10.1080/00423114.2015.1114655
    [11] 解欢,杨岳,童林军,等. 基于混合代理模型的高速轨道车辆悬挂参数多目标优化[J]. 铁道科学与工程学报,2016,13(10): 2056-2063. doi: 10.3969/j.issn.1672-7029.2016.10.025

    XIE Huan, YANG Yue, TONG Linjun, et al. Multi-objective optimization of the suspension parameters for high speed rail vehicle based on a hybrid surrogate model[J]. Journal of Railway Science and Engineering, 2016, 13(10): 2056-2063. doi: 10.3969/j.issn.1672-7029.2016.10.025
    [12] MOUSAVI BIDELEH S M, BERBYUK V, PERSSON R. Wear/comfort Pareto optimisation of bogie suspension[J]. Vehicle System Dynamics, 2016, 54(8): 1053-1076. doi: 10.1080/00423114.2016.1180405
    [13] MOHEBBI M, REZVANI M A. Multi objective optimization of aerodynamic design of high speed railway windbreaks using Lattice Boltzmann Method and wind tunnel test results[J]. International Journal of Rail Transportation, 2018, 6(3): 183-201. doi: 10.1080/23248378.2018.1463873
    [14] 姚远,陈相旺,李广,等. 高速列车抗蛇行减振器参数的多目标优化研究[J]. 西南交通大学学报,2021,56(6): 1298-1304.

    YAO Yuan, CHEN Xiangwang, LI Guang, et al. Multi-objective optimization of yaw damper parameters for high-speed train[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1298-1304.
    [15] 中华人民共和国铁道部. 铁道机车动力学性能试验鉴定方法及评定标准: TB/T 2360—1993[S]. 北京: 中国铁道出版社, 1994.
    [16] 林家浩, 张亚辉. 随机振动的虚拟激励法[M]. 北京: 科学出版社, 2004.
    [17] 王平,杨帆,韦凯. 扣件胶垫刚度频变的车-线-隧垂向耦合随机振动虚拟辛分析[J]. 西南交通大学学报,2017,52(2): 209-215. doi: 10.3969/j.issn.0258-2724.2017.02.001

    WANG Ping, YANG Fan, WEI Kai. Symplectic random vibration analysis of vertically coupled vehicle-track-tunnel system considering frequency-dependent stiffness of rail pads[J]. Journal of Southwest Jiaotong University, 2017, 52(2): 209-215. doi: 10.3969/j.issn.0258-2724.2017.02.001
    [18] LIU X X, ZHANG Y H, GUO H F, et al. Random vibration analysis procedure of railway vehicle[J]. Vehicle System Dynamics, 2020, 58(12): 1873-1892. doi: 10.1080/00423114.2019.1656813
    [19] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  139
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-10
  • 修回日期:  2021-04-19
  • 网络出版日期:  2022-08-15
  • 刊出日期:  2021-04-29

目录

    /

    返回文章
    返回