• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

一年龄期内超高泵送SCC力学性能时变研究

周济 陈宗平 唐际宇 陈宇良

周济, 陈宗平, 唐际宇, 陈宇良. 一年龄期内超高泵送SCC力学性能时变研究[J]. 西南交通大学学报, 2022, 57(6): 1175-1183. doi: 10.3969/j.issn.0258-2724.20200746
引用本文: 周济, 陈宗平, 唐际宇, 陈宇良. 一年龄期内超高泵送SCC力学性能时变研究[J]. 西南交通大学学报, 2022, 57(6): 1175-1183. doi: 10.3969/j.issn.0258-2724.20200746
ZHOU Ji, CHEN Zongping, TANG Jiyu, CHEN Yuliang. Time Variation of Mechanical Properties of Ultra-High Pumped Self-Compacting Concrete Within One Year of Age[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1175-1183. doi: 10.3969/j.issn.0258-2724.20200746
Citation: ZHOU Ji, CHEN Zongping, TANG Jiyu, CHEN Yuliang. Time Variation of Mechanical Properties of Ultra-High Pumped Self-Compacting Concrete Within One Year of Age[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1175-1183. doi: 10.3969/j.issn.0258-2724.20200746

一年龄期内超高泵送SCC力学性能时变研究

doi: 10.3969/j.issn.0258-2724.20200746
基金项目: 国家自然科学基金(51578163);八桂学者专项研究经费项目([2019]79号);广西科技基地与人才专项(桂科AD21075031);中央引导地方科技发展资金项目(桂科ZY21195010);南宁市科学研究与技术开发计划重大专项(20223024)
详细信息
    作者简介:

    周济(1995—),男,博士研究生,研究方向为钢-混凝土组合结构、海洋及近海混凝土结构,E-mail:zhouji_1995@163.com

    通讯作者:

    陈宗平(1975—),男,教授,博士,研究方向为钢-混凝土组合结构、海洋及近海混凝土结构、再生混凝土结构,E-mail:zpchen@gxu.edu.cn

  • 中图分类号: TU528.53

Time Variation of Mechanical Properties of Ultra-High Pumped Self-Compacting Concrete Within One Year of Age

  • 摘要:

    为揭示施工龄期内超高层建筑泵送自密实混凝土(SCC)轴心抗压强度、弹性模量以及劈裂抗拉强度等力学性能的时变规律,提供超高层建筑施工阶段力学性能分析的基础依据,依托某一超400 m高层建筑泵送SCC制作了120个试件,包括96个圆柱体件和24个立方体试件,并对其进行了不同时间龄期的力学性能测试,获取了超高层建筑泵送SCC的应力-应变曲线,提出了各力学性能指标时变及关系计算公式. 研究结果表明:超高层建筑泵送SCC在免振条件下具有良好的密实性;随着龄期的增长,超高层建筑泵送SCC的峰值应力增大,且其峰值应变显著大于普通混凝土的;早期14 d内为各项性能增长的关键阶段,弹性模量在90 d后趋于稳定,而轴心抗压强度和劈裂抗拉强度在28 d后仍有大幅增长;龄期T ≤ 60 d时,超高层建筑泵送SCC的轴压刚度随龄期增长呈增大趋势,而相对韧性则呈减小趋势,龄期T > 60 d时,二者均变化较小趋于稳定;超高层建筑泵送SCC强度的提高能增快早期性能的发展,且能增大轴压刚度和相对韧性;提出的各力学性能指标时变计算公式能为超高层建筑泵送SCC的力学性能预测与评估提供可靠依据.

     

  • 图 1  轴压试件应力-应变曲线

    Figure 1.  Stress-strain curves of specimens underaxial compression

    图 2  轴心抗压强度随龄期的变化

    Figure 2.  Variations of axial compressive strength with age

    图 3  相对轴压强度随龄期变化的拟合结果

    Figure 3.  Fitting results of relative axial compression strength changing with age

    图 4  弹性模量随龄期的变化

    Figure 4.  Variations of elastic modulus with age

    图 5  相对弹性模量随龄期变化的拟合结果

    Figure 5.  Fitting results of relative elastic modulus changing with age

    图 6  C60劈裂抗拉强度随龄期的变化

    Figure 6.  Variations of splitting tensile strength with age

    图 7  Ecfc1间的换算关系

    Figure 7.  Conversion relationship between Ec and fc1

    图 8  fcfc1间的换算关系

    Figure 8.  Conversion relationship between Ec and fc1

    表  1  泵送SCC配合比

    Table  1.   Mix proportion of the pumped SCC

    品种及规格质量配合比用量/(kg·m−3
    C30C60C30C60
    海螺 P•O42.5 水流1.001.00220380
    河砂(优质)2.601.32571500
    碎石机制砂1.720.66379250
    5 ~ 25 mm(优质)石子4.272.50940950
    自来水0.700.42155158
    S95 矿粉0.230.175065
    Ⅱ级粉煤灰0.270.216080
    四川朗天硅灰0.140.093035
    聚羧酸 PCA 外加剂0.030.037.213.0
    下载: 导出CSV

    表  2  各试件力学性能指标

    Table  2.   Mechanical property indexes of each specimen

    试件
    编号
    fcu /MPafc1 /MPaEc /GPa试件
    编号
    fcu /MPafc1 /MPaEc /GPaft /MPa
    实测平均实测平均实测平均实测平均实测平均实测平均实测平均
    C30-3 d20.020.616.016.513.513.9C60-3 d45.240.536.232.430.532.63.03.2
    21.817.514.046.337.031.13.1
    20.016.014.130.124.136.23.4
    C30-7 d22.223.417.818.719.219.6C60-7 d37.043.929.635.233.833.43.23.2
    27.121.718.848.038.434.33.2
    20.816.720.946.837.532.13.2
    C30-14 d30.331.324.325.024.925.1C60-14 d54.353.643.442.834.235.13.33.7
    31.525.225.355.744.636.84.0
    32.025.625.150.640.534.43.7
    C30-28 d42.840.234.232.130.430.4C60-28 d57.957.746.346.238.036.33.73.7
    41.333.130.951.541.233.53.6
    36.429.230.063.751.037.23.8
    C30-60 d50.044.940.035.930.531.0C60-60 d66.360.253.048.236.238.44.63.9
    37.530.029.559.347.436.43.5
    47.337.832.955.144.142.63.6
    C30-90 d46.546.537.237.233.433.5C60-90 d62.462.349.949.841.138.14.54.5
    46.237.033.060.548.436.24.0
    46.837.534.263.951.136.94.9
    C30-180 d48.048.938.439.135.334.3C60-180 d68.366.854.653.441.740.04.74.8
    46.737.435.762.950.440.34.7
    52.041.631.869.155.337.85.0
    C30-360 d55.551.144.440.936.834.7C60-360 d71.367.257.053.837.036.75.05.2
    54.643.633.163.350.734.85.4
    43.134.534.367.053.638.45.1
    下载: 导出CSV

    表  3  轴压刚度及相对韧性

    Table  3.   Axial compressive stiffness and relative toughness

    龄期/d 强度等级 轴压刚度 /MN 相对韧性 /×10−3
    3 C30 64.35 3.61
    C60 90.62 3.87
    7 C30 62.91 3.23
    C60 155.61 2.97
    14 C30 99.31 3.08
    C60 161.13 3.55
    28 C30 106.67 2.86
    C60 170.34 3.50
    60 C30 149.31 2.76
    C60 168.08 3.34
    90 C30 165.49 2.60
    C60 148.43 3.82
    180 C30 155.88 2.33
    C60 180.99 2.97
    360 C30 163.55 2.55
    C60 196.37 2.92
    下载: 导出CSV
  • [1] KAMAL M M, SAFAN M A, BASHANDY A A, et al. Experimental investigation on the behavior of normal strength and high strength self-curing self-compacting concrete[J]. Journal of Building Engineering, 2018, 16: 79-93. doi: 10.1016/j.jobe.2017.12.012
    [2] 刘运华,谢友均,龙广成. 自密实混凝土研究进展[J]. 硅酸盐学报,2007,35(5): 671-678. doi: 10.3321/j.issn:0454-5648.2007.05.028

    LIU Yunhua, XIE Youjun, LONG Guangcheng. Progress of research on self-compacting concrete[J]. Journal of the Chinese Ceramic Society, 2007, 35(5): 671-678. doi: 10.3321/j.issn:0454-5648.2007.05.028
    [3] HAZAREE C, MAHADEVAN V. Single stage concrete pumping through 2.432 km (1.51 miles): weather and execution challenges[J]. Case Studies in Construction Materials, 2015, 3: 56-69. doi: 10.1016/j.cscm.2015.05.001
    [4] TAN Y Q, ZHANG H, YANG D M, et al. Numerical simulation of concrete pumping process and investigation of wear mechanism of the piping wall[J]. Tribology International, 2012, 46(1): 137-144.
    [5] ROZIÈRE E, GRANGER S, TURCRY P, et al. Influence of paste volume on shrinkage cracking and fracture properties of self-compacting concrete[J]. Cement and Concrete Composites, 2007, 29(8): 626-636. doi: 10.1016/j.cemconcomp.2007.03.010
    [6] ZHAO Y, MA J, WU Z, et al. Study on fracture properties of self-compacting concrete using wedge splitting test[C]//Proceedings of the 1st International Symposium on Design, Performance and Use of Self-Consolidating Concrete. Paris: RILEM Publication SARL, 2005: 421-428
    [7] OMRANE M, KENAI S, KADRI E H, et al. Performance and durability of self-compacting concrete using recycled concrete aggregates and natural pozzolan[J]. Journal of Cleaner Production, 2017, 165: 415-430. doi: 10.1016/j.jclepro.2017.07.139
    [8] SANTOS S, DA SILVA P R, DE BRITO J. Self-compacting concrete with recycled aggregates-A literature review[J]. Journal of Building Engineering, 2019, 22: 349-371. doi: 10.1016/j.jobe.2019.01.001
    [9] ZHU W Z, BARTOS P J M. Permeation properties of self-compacting concrete[J]. Cement and Concrete Research, 2003, 33(6): 921-926. doi: 10.1016/S0008-8846(02)01090-6
    [10] 元强,李白云,史才军,等. 混凝土泵送性能的流变学表征及预测综述[J]. 材料导报,2018,32(17): 2976-2985. doi: 10.11896/j.issn.1005-023X.2018.17.011

    YUAN Qiang, LI Baiyun, SHI Caijun, et al. An overview on the prediction and rheological characterization of pumping concrete[J]. Materials Review, 2018, 32(17): 2976-2985. doi: 10.11896/j.issn.1005-023X.2018.17.011
    [11] 中华人民共和国建设部, 国家质量监督检验检疫总局. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.
    [12] LI L, HWANG C L. Analysis on the stress-strain behavior of self-consolidating concrete[C]//SCC2005-China: 1st International Symposium on Design, Performance and Use of Self-Consolidating Concrete. [S.l.]: RILEM Publications SARL, 2005: 517-522.
    [13] 朱伯芳. 大体积混凝土温度应力与温度控制[M]. 北京: 中国电力出版社, 2003.
    [14] TAERWE L. Fib model code for concrete structures 2010[M]. [S.l.]: Ernst & Sohn, Wiley, 2013.
    [15] 杨久俊,刘俊霞,韩静宜,等. 大流动度超高强钢纤维混凝土力学性能研究[J]. 建筑材料学报,2010,13(1): 1-6. doi: 10.3969/j.issn.1007-9629.2010.01.001

    YANG Jiujun, LIU Junxia, HAN Jingyi, et al. Studies on mechanical property of high fluidity steel fiber reinforced ultra-high strength concrete[J]. Journal of Building Materials, 2010, 13(1): 1-6. doi: 10.3969/j.issn.1007-9629.2010.01.001
    [16] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011.
    [17] 赵军,高丹盈. 高性能自密实混凝土的力学及变形性能试验研究[J]. 中外公路,2006,26(2): 161-165. doi: 10.3969/j.issn.1671-2579.2006.02.045
    [18] 王建新. 高性能自密实混凝土力学性能及抗冻性能研究[D]. 长春: 吉林大学, 2019.
    [19] NIKBIN I M, BEYGI M H A, KAZEMI M T, et al. A comprehensive investigation into the effect of aging and coarse aggregate size and volume on mechanical properties of self-compacting concrete[J]. Materials & Design, 2014, 59: 199-210.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  127
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-03
  • 修回日期:  2021-02-28
  • 网络出版日期:  2022-08-08
  • 刊出日期:  2021-03-02

目录

    /

    返回文章
    返回