• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于跟驰特性的智能网联车混合交通流轨迹重构

蒋阳升 刘梦 王思琛 高宽 姚志洪

蒋阳升, 刘梦, 王思琛, 高宽, 姚志洪. 基于跟驰特性的智能网联车混合交通流轨迹重构[J]. 西南交通大学学报, 2021, 56(6): 1135-1142. doi: 10.3969/j.issn.0258-2724.20200735
引用本文: 蒋阳升, 刘梦, 王思琛, 高宽, 姚志洪. 基于跟驰特性的智能网联车混合交通流轨迹重构[J]. 西南交通大学学报, 2021, 56(6): 1135-1142. doi: 10.3969/j.issn.0258-2724.20200735
JIANG Yangsheng, LIU Meng, WANG Sichen, GAO Kuan, YAO Zhihong. Trajectory Reconstruction for Traffic Flow Mixed withConnected Automated Vehicles Based on Car-Following Characteristics[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1135-1142. doi: 10.3969/j.issn.0258-2724.20200735
Citation: JIANG Yangsheng, LIU Meng, WANG Sichen, GAO Kuan, YAO Zhihong. Trajectory Reconstruction for Traffic Flow Mixed withConnected Automated Vehicles Based on Car-Following Characteristics[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1135-1142. doi: 10.3969/j.issn.0258-2724.20200735

基于跟驰特性的智能网联车混合交通流轨迹重构

doi: 10.3969/j.issn.0258-2724.20200735
基金项目: 国家自然科学基金(52002339);四川省科技计划(2021YJ0535,2020YFH0026);广西壮族自治区科技计划(2021AA01007AA);中央高校基本科研业务费专项资金(2682021CX058)
详细信息
    作者简介:

    蒋阳升(1976—),男,教授,博士,研究方向为交通系统优化,E-mail:jiangyangsheng@swjtu.cn

  • 中图分类号: U491

Trajectory Reconstruction for Traffic Flow Mixed withConnected Automated Vehicles Based on Car-Following Characteristics

  • 摘要:

    车辆轨迹数据蕴含着丰富的时空交通信息,是交通状态估计的基础数据之一. 为解决现有数据采集环境难以获得全样本车辆轨迹的问题,面向智能网联环境,构建了混合交通流全样本车辆轨迹重构模型. 首先,分析了智能网联环境下混合交通流的车辆构成及其轨迹数据采集环境;然后,提出了基于智能驾驶员跟驰模型的车辆轨迹重构模型,实现了对插入轨迹数量、轨迹位置和速度等参数的估计;最后,设计仿真试验验证了模型在不同交通流密度和智能网联车(connected automated vehicle,CAV)渗透率条件下的适用性. 试验结果表明:CAV和网联人工驾驶车(connected vehicle,CV)的渗透率为8%和20%时,该车辆轨迹重构模型在不同交通流密度下均能重构84%以上的车辆轨迹;重构轨迹准确性随着CAV和CV渗透率的增加而提高;当交通密度为70辆/km,且CAV渗透率仅为4%的情况下,模型也能重构82%的车辆轨迹.

     

  • 图 1  混合交通流中不同车辆组成

    Figure 1.  Composition of different types of vehicles in mixed traffic flow

    图 2  混合交通流轨迹时空图

    Figure 2.  Spatio-temporal diagram of mixed traffic flow trajectories

    图 3  车辆轨迹示意

    Figure 3.  Schematic diagram of vehicle trajectories

    图 4  插入车辆轨迹示意

    Figure 4.  Schematic diagram of inserted vehicle trajectories

    图 5  流量-密度-速度关系

    Figure 5.  Relationship between volume,density and speed of traffic flow

    图 6  交通流密度为60辆/km时轨迹时空图

    Figure 6.  Spatio-temporal diagram of the trajectories when traffic flow density is 60 veh/km

    图 7  CAV渗透率为14%时轨迹时空图

    Figure 7.  Spatio-temporal diagram of the trajectories when CAV penetration rate is 14%

    图 8  均方根误差热力图

    Figure 8.  Heat map of RMSE

    表  1  不同交通流密度条件下插入车辆数估计

    Table  1.   Estimation of the numbers of inserted vehicles under different traffic densities

    交通流密度/
    (辆•km−1
    CAV/
    插入车辆/辆实际车辆/辆插入误差/辆插入误差百分比/%
    20 2 5.80 6.40 0.60 9.38
    30 2 14.05 13.80 0.35 2.54
    40 3 15.80 16.05 0.25 1.56
    50 4 21.75 21.38 0.31 1.50
    60 5 27.85 25.75 2.10 8.16
    70 6 31.40 27.25 4.30 15.78
    注:表中插入车辆数为多次仿真试验的平均值,因此会出现不是整数的情况;插入误差百分比为插入辆数的误差与实际插入车辆数的百分比.
    下载: 导出CSV

    表  2  不同交通流密度条件下轨迹重构误差

    Table  2.   Trajectory reconstruction error under different traffic density conditions

    交通流密度/
    (辆•km−1
    CAV/
    MAE/
    m
    MAPE/
    %
    RMSE/
    m
    20 2 15.02 0.36 18.28
    30 2 11.90 0.29 14.30
    40 3 12.14 0.31 18.68
    50 4 12.30 0.35 20.39
    60 5 13.09 0.42 22.19
    70 6 13.39 0.52 23.47
    平均值 12.97 0.37 19.55
    下载: 导出CSV

    表  3  不同渗透率条件下插入车辆数估计

    Table  3.   Estimation of the numbers of inserted vehicles under different CAV penetration rates

    CAV
    渗透率/%
    CAV/辆插入
    车辆/辆
    实际
    车辆/辆
    插入
    误差/辆
    插入误差
    百分比/%
    4 3 45.50 38.70 6.80 17.57
    6 4 41.50 35.20 5.80 16.48
    8 6 31.40 27.25 4.30 15.78
    10 7 29.44 25.44 4.00 15.72
    12 8 26.80 23.20 3.60 15.52
    14 10 19.60 17.00 2.60 15.29
    下载: 导出CSV

    表  4  CAV不同渗透率条件下轨迹重构误差

    Table  4.   Trajectory reconstruction error under different CAV penetration rates

    CAV渗
    透率/%
    CAV/辆MAE/mMAPE/%RMSE/m
    4 3 16.76 0.68 33.77
    6 4 15.69 0.63 28.95
    8 6 13.39 0.52 23.47
    10 7 12.98 0.51 21.86
    12 8 12.23 0.49 19.90
    14 10 10.45 0.42 16.45
    下载: 导出CSV

    表  5  CV不同渗透率轨迹重构结果

    Table  5.   Reconstruction results of different CV penetration rates

    CV 渗透率/%CV/辆插入
    误差/辆
    插入误差
    百分比/%
    MAE/mMAPE/
    %
    RMSE/
    m
    16 11 5.40 0.18 17.46 0.69 32.43
    18 13 4.33 0.16 13.98 0.55 24.27
    20 14 4.30 0.16 13.39 0.52 23.47
    22 15 4.20 0.15 12.93 0.52 21.50
    24 17 3.80 0.14 11.50 0.48 19.11
    下载: 导出CSV
  • [1] BANSAL P, KOCKELMAN K M. Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies[J]. Transportation Research Part A:Policy and Practice, 2017, 95: 49-63. doi: 10.1016/j.tra.2016.10.013
    [2] PUNZO V, BORZACCHIELLO M T, CIUFFO B. On the assessment of vehicle trajectory data accuracy and application to the Next Generation SIMulation (NGSIM) program data[J]. Transportation Research Part C:Emerging Technologies, 2011, 19(6): 1243-1262. doi: 10.1016/j.trc.2010.12.007
    [3] COIFMAN B. Estimating travel times and vehicle trajectories on freeways using dual loop detectors[J]. Transportation Research Part A:Policy and Practice, 2002, 36(4): 351-364. doi: 10.1016/S0965-8564(01)00007-6
    [4] RAO W M, WU Y J, XIA J X, et al. Origin-destination pattern estimation based on trajectory reconstruction using automatic license plate recognition data[J]. Transportation Research Part C:Emerging Technologies, 2018, 95: 29-46. doi: 10.1016/j.trc.2018.07.002
    [5] HAO P, BORIBOONSOMSIN K, WU G Y, et al. Modal activity-based stochastic model for estimating vehicle trajectories from sparse mobile sensor data[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(3): 701-711. doi: 10.1109/TITS.2016.2584388
    [6] WAN N F, VAHIDI A, LUCKOW A. Reconstructing maximum likelihood trajectory of probe vehicles between sparse updates[J]. Transportation Research Part C:Emerging Technologies, 2016, 65: 16-30. doi: 10.1016/j.trc.2016.01.010
    [7] SHAN X N, HAO P, CHEN X H, et al. Vehicle energy/emissions estimation based on vehicle trajectory reconstruction using sparse mobile sensor data[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(2): 716-726. doi: 10.1109/TITS.2018.2826571
    [8] LI Z, KLUGER R, HU X B, et al. Reconstructing vehicle trajectories to support travel time estimation[J]. Transportation Research Record:Journal of the Transportation Research Board, 2018, 2672(42): 148-158. doi: 10.1177/0361198118772956
    [9] XIE X, VAN LINT H, VERBRAECK A. A generic data assimilation framework for vehicle trajectory reconstruction on signalized urban arterials using particle filters[J]. Transportation Research Part C:Emerging Technologies, 2018, 92: 364-391. doi: 10.1016/j.trc.2018.05.009
    [10] MEHRAN B, KUWAHARA M, NAZNIN F. Implementing kinematic wave theory to reconstruct vehicle trajectories from fixed and probe sensor data[J]. Transportation Research Part C:Emerging Technologies, 2012, 20(1): 144-163. doi: 10.1016/j.trc.2011.05.006
    [11] 唐克双,徐天祥,潘昂,等. 基于定点检测数据的城市干道车辆轨迹重构[J]. 同济大学学报(自然科学版),2016,44(10): 1545-1552.

    TANG Keshuang, XU Tianxiang, PAN Ang, et al. Signal timing and detector data-based reconstruction of vehicle trajectories on urban arterials[J]. Journal of Tongji University (Natural Science), 2016, 44(10): 1545-1552.
    [12] 王昊, 金诚杰. 交通流理论及应用[M]. 北京: 人民交通出版社, 2020: 50-79.
    [13] WANG Y P, WEI L, CHEN P. Trajectory reconstruction for freeway traffic mixed with human-driven vehicles and connected and automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2020, 111: 135-155. doi: 10.1016/j.trc.2019.12.002
    [14] TALEBPOUR A, MAHMASSANI H S. Influence of connected and autonomous vehicles on traffic flow stability and throughput[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 143-163. doi: 10.1016/j.trc.2016.07.007
    [15] YAO Z H, XU T R, JIANG Y S, et al. Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time[J]. Physica A:Statistical Mechanics and Its Applications, 2021, 561: 125218.1-125218.15. doi: 10.1016/j.physa.2020.125218
    [16] MILANÉS V, SHLADOVER S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C:Emerging Technologies, 2014, 48: 285-300. doi: 10.1016/j.trc.2014.09.001
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  765
  • HTML全文浏览量:  353
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-10
  • 修回日期:  2021-01-13
  • 网络出版日期:  2021-04-15
  • 刊出日期:  2021-04-15

目录

    /

    返回文章
    返回