• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑燃料电池老化的多堆自适应功率分配方法

李奇 刘强 李艳昆 王天宏

李奇, 刘强, 李艳昆, 王天宏. 考虑燃料电池老化的多堆自适应功率分配方法[J]. 西南交通大学学报, 2022, 57(4): 713-721. doi: 10.3969/j.issn.0258-2724.20200718
引用本文: 李奇, 刘强, 李艳昆, 王天宏. 考虑燃料电池老化的多堆自适应功率分配方法[J]. 西南交通大学学报, 2022, 57(4): 713-721. doi: 10.3969/j.issn.0258-2724.20200718
LI Qi, LIU Qiang, LI Yankun, WANG Tianhong. Multi-Stack Adaptive Power Allocation Method Considering Fuel Cell Aging[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 713-721. doi: 10.3969/j.issn.0258-2724.20200718
Citation: LI Qi, LIU Qiang, LI Yankun, WANG Tianhong. Multi-Stack Adaptive Power Allocation Method Considering Fuel Cell Aging[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 713-721. doi: 10.3969/j.issn.0258-2724.20200718

考虑燃料电池老化的多堆自适应功率分配方法

doi: 10.3969/j.issn.0258-2724.20200718
基金项目: 国家自然科学基金(51977181);四川省科技计划(19YYJC0698);霍英东教育基金会高等院校青年教师基金(171104)
详细信息
    作者简介:

    李奇(1984—),男,教授,博士,博士生导师,研究方向为轨道交通新能源技术、综合能源系统运行与控制等,E-mail:liqi0800@163.com

  • 中图分类号: TM911.4

Multi-Stack Adaptive Power Allocation Method Considering Fuel Cell Aging

  • 摘要:

    为延长多堆燃料电池系统(multi-stack fuel cell system,MFCS)使用寿命,保证运行过程中各电堆总体退化性能逐渐趋于一致,针对大功率质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)系统,提出了一种考虑电堆老化的MFCS自适应功率分配方法. 在MFCS运行过程中,由于燃料电池输出功率会随不同运行条件而动态变化,导致每个电堆老化程度通常不一致,因此提出量化指标电压退化程度(voltage degradation degree,VDD)来表征燃料电池在运行过程中电堆的老化程度;还采用燃料电池半经验模型来模拟老化对电堆性能的影响;最后,通过RT-LAB搭建硬件在环(hardware-in-the-loop,HIL)测试平台,与原有的功率分配方法做比较. 结果表明:该方法能协调各燃料电池出力,减缓电堆老化速率;相较于平均功率分配方法和链式功率分配方法在MFCS的氢耗量上分别降低了13.59%和8.04%.

     

  • 图 1  多堆拓扑结构

    Figure 1.  Multi-stack topology

    图 2  MFCS结构

    Figure 2.  MFCS structure

    图 3  实测极化曲线和模型仿真曲线对比

    Figure 3.  Comparison of measured polarization curve and model simulation curve

    图 4  PEMFC测试前到测试结束后的极化曲线

    Figure 4.  Polarization curves of PEMFC stack before and after testing

    图 5  自适应功率分配算法控制结构

    Figure 5.  Control structure of adaptive power allocation algorithm

    图 6  HIL仿真平台

    Figure 6.  Semi-physical simulation platform

    图 7  负载运行工况

    Figure 7.  Loading operations

    图 8  平均功率分配

    Figure 8.  Average power allocation

    图 9  平均功率分配下各电堆单片VDD

    Figure 9.  Single-chip voltage degradation degree of each stack for average power allocation

    图 10  链式功率分配

    Figure 10.  Chain power allocation

    图 11  链式功率分配下各电堆单片VDD

    Figure 11.  Single-chip voltage degradation degree of each stack for chain power allocation

    图 12  自适应功率分配

    Figure 12.  Adaptive power allocation

    图 13  自适应功率分配下各电堆单片VDD

    Figure 13.  Single-chip voltage degradation degree of each stack for adaptive power allocation

    图 14  多堆燃料电池系统总氢耗量

    Figure 14.  Total hydrogen consumption of MFCS

    表  1  PEMFC参数

    Table  1.   PEMFC parameters

    参数额定功率/kW电压范
    围/V
    额定电流/A 电池单
    体数/个
    氢气压力/MPa冷却液
    温度/℃
    取值110480 ~ 660238 6700.850 ~ 75
    下载: 导出CSV

    表  2  电堆老化参数

    Table  2.   Stack aging parameters μV/h

    参数HDLDCD
    数值11.74010.1700.044
    下载: 导出CSV

    表  3  3种分配方法VDD比较

    Table  3.   Comparison of VDD of three allocation methods μV

    电堆自适应分配链式分配平均分配
    FC10.931.090.95
    FC20.900.910.95
    FC30.850.810.95
    下载: 导出CSV

    表  4  3种分配方法的氢耗比较

    Table  4.   Comparison of hydrogen consumption of three allocation methods g

    功率分配方法自适应链式平均
    氢耗量850.89911.51984.78
    下载: 导出CSV
  • [1] 陈维荣,钱清泉,李奇. 燃料电池混合动力列车的研究现状与发展趋势[J]. 西南交通大学学报,2009,44(1): 1-6. doi: 10.3969/j.issn.0258-2724.2009.01.001

    CHEN Weirong, QIAN Qingquan, LI Qi. Investigation status and development trend of hybrid power train based on fuel cell[J]. Journal of Southwest Jiaotong University, 2009, 44(1): 1-6. doi: 10.3969/j.issn.0258-2724.2009.01.001
    [2] 陈维荣,张国瑞,孟翔,等. 燃料电池混合动力有轨电车动力性分析与设计[J]. 西南交通大学学报,2017,52(1): 1-8. doi: 10.3969/j.issn.0258-2724.2017.01.001

    CHEN Weirong, ZHANG Guorui, MENG Xiang, et al. Dynamic performance analysis and design of fuel cell hybrid locomotive[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 1-8. doi: 10.3969/j.issn.0258-2724.2017.01.001
    [3] 李曦,曹广益,朱新坚. 质子交换膜燃料电池电堆温度特性的模糊建模[J]. 上海交通大学学报,2005,39(增刊1): 187-188.

    LI Xi, CAO Guangyi, ZHU Xinjian. Fuzzy modeling for PEMFC stack temperature characteristic[J]. Journal of Shanghai Jiaotong University, 2005, 39(S1): 187-188.
    [4] 朱选才,徐德鸿,吴屏,等. 燃料电池发电装置能量管理控制系统设计[J]. 中国电机工程学报,2008,28(11): 101-106. doi: 10.3321/j.issn:0258-8013.2008.11.018

    ZHU Xuancai, XU Dehong, WU Ping, et al. Design of energy management control in fuel cell power system[J]. Proceedings of the CSEE, 2008, 28(11): 101-106. doi: 10.3321/j.issn:0258-8013.2008.11.018
    [5] 王玲,李欣然,马亚辉,等. 燃料电池发电系统的机电动态模型[J]. 中国电机工程学报,2011,31(22): 40-47.

    WANG Ling, LI Xinran, MA Yahui, et al. Dynamic model of fuel cell power generating system[J]. Proceedings of the CSEE, 2011, 31(22): 40-47.
    [6] LIU J X, LUO W S, YANG X Z, et al. Robust model-based fault diagnosis for PEM fuel cell air-feed system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3261-3270. doi: 10.1109/TIE.2016.2535118
    [7] XIE C G, XU X Y, BUJLO P, et al. Fuel cell and lithium iron phosphate battery hybrid powertrain with an ultracapacitor bank using direct parallel structure[J]. Journal of Power Sources, 2015, 279: 487-494. doi: 10.1016/j.jpowsour.2015.01.029
    [8] 朱亚男,李奇,黄文强,等. 基于功率自适应分配的多堆燃料电池系统效率协调优化控制[J]. 中国电机工程学报,2019,39(6): 1714-1722, 1868.

    ZHU Yanan, LI Qi, HUANG Wenqiang, et al. Efficiency coordination and optimization control method of multi-stack fuel cell systems based on power adaptive allocation[J]. Proceedings of the CSEE, 2019, 39(6): 1714-1722, 1868.
    [9] 卫东,郑东,褚磊民. 空冷型质子交换膜燃料电池堆最优性能输出控制[J]. 化工学报,2010,61(5): 1293-1300.

    WEI Dong, ZHENG Dong, CHU Leimin. Output control of optimal performance for air-cooling PEMFC stack[J]. CIESC Journal, 2010, 61(5): 1293-1300.
    [10] KELOUWANI S, ADEGNON K, AGBOSSOU K, et al. Online system identification and adaptive control for PEM fuel cell maximum efficiency tracking[J]. IEEE Transactions on Energy Conversion, 2012, 27(3): 580-592. doi: 10.1109/TEC.2012.2194496
    [11] CHEN H C, PEI P C, SONG M C. Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells[J]. Applied Energy, 2015, 142: 154-163. doi: 10.1016/j.apenergy.2014.12.062
    [12] 吴红飞,孙凯,邢岩. 新能源发电串联分布式高能效变换系统[J]. 中国电机工程学报,2012,32(33): 1-6, 168.

    WU Hongfei, SUN Kai, XING Yan. Distributed high efficiency renewable power systems with modules in series connection[J]. Proceedings of the CSEE, 2012, 32(33): 1-6, 168.
    [13] HUA Z G, ZHENG Z X, GAO F, et al. Challenges of the remaining useful life prediction for proton exchange membrane fuel cells[C]//45th Annual Conference of the IEEE Industrial Electronics Society. Lisbon: IEEE, 2019: 6382-6387.
    [14] MARX N, CARDOZO J, BOULON L, et al. Comparison of the series and parallel architectures for hybrid multi-stack fuel cell-battery systems[C]//2015 IEEE Vehicle Power and Propulsion Conference. Montreal: IEEE, 2015: 1-6.
    [15] 尹良震,李奇,洪志湖,等. PEMFC发电系统FFRLS在线辨识和实时最优温度广义预测控制方法[J]. 中国电机工程学报,2017,37(11): 3223-3235, 3378.

    YIN Liangzhen, LI Qi, HONG Zhihu, et al. FFRLS online identification and real-time optimal temperature generalized predictive control method of PEMFC power generation system[J]. Proceedings of the CSEE, 2017, 37(11): 3223-3235, 3378.
    [16] 吴宇,皇甫宜耿,张琳,等. 大扰动Buck-Boost变换器的鲁棒高阶滑模控制[J]. 中国电机工程学报,2015,35(7): 1740-1748.

    WU YU, HUANGFU Yigeng, ZHANG Lin, et al. A robust high order sliding mode for buck-boost converters with large disturbances[J]. Proceedings of the CSEE, 2015, 35(7): 1740-1748.
    [17] LIU H, CHEN J, HISSEL D, et al. Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method[J]. Applied Energy, 2019, 237: 910-919. doi: 10.1016/j.apenergy.2019.01.023
    [18] LI Q, WANG T H, DAI C H, et al. Power management strategy based on adaptive droop control for a fuel cell-battery-supercapacitor hybrid tramway[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5658-5670. doi: 10.1109/TVT.2017.2715178
    [19] 翁元明,林瑞,唐文超,等. 燃料电池堆单片电压一致性研究进展[J]. 电源技术,2015,39(1): 199-202. doi: 10.3969/j.issn.1002-087X.2015.01.064

    WENG Yuanming, LIN Rui, TANG Wenchao, et al. Development of individual cell voltage uniformity of fuel cell stack[J]. Chinese Journal of Power Sources, 2015, 39(1): 199-202. doi: 10.3969/j.issn.1002-087X.2015.01.064
    [20] MACIAS FERNANDEZ A, KANDIDAYENI M, BOULON L, et al. An adaptive state machine based energy management strategy for a multi-stack fuel cell hybrid electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 220-234. doi: 10.1109/TVT.2019.2950558
    [21] WANG M H, YAU H T, WANG T Y. Extension sliding mode controller for maximum power point tracking of hydrogen fuel cells[J]. Abstract and Applied Analysis, 2013, 2013: 1-8.
    [22] PEI P C, CHEN H C. Main factors affecting the lifetime of proton exchange membrane fuel cells in vehicle applications:a review[J]. Applied Energy, 2014, 125: 60-75. doi: 10.1016/j.apenergy.2014.03.048
    [23] HUA Z G, ZHENG Z X, PÉRA M C, et al. Remaining useful life prediction of PEMFC systems based on the multi-input echo state network[J]. Applied Energy, 2020, 265: 114791.1-114791.13. doi: 10.1016/j.apenergy.2020.114791
    [24] 戴朝华,史青,陈维荣,等. 质子交换膜燃料电池单体电压均衡性研究综述[J]. 中国电机工程学报,2016,36(5): 1289-1302.

    DAI Chaohua, SHI Qing, CHEN Weirong, et al. A review of the single cell voltage uniformity in proton exchange membrane fuel cells[J]. Proceedings of the CSEE, 2016, 36(5): 1289-1302.
    [25] PEI P C, CHANG Q F, TANG T. A quick evaluating method for automotive fuel cell lifetime[J]. International Journal of Hydrogen Energy, 2008, 33(14): 3829-3836. doi: 10.1016/j.ijhydene.2008.04.048
    [26] TOQUICA CARDENAS D C, MARX N, BOULON L, et al. Degraded mode operation of multi-stack fuel cell systems[C]//2014 IEEE Vehicle Power and Propulsion Conference Coimbra. [S.l.]: IEEE, 2014: 1-6.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  449
  • HTML全文浏览量:  194
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-22
  • 修回日期:  2021-02-18
  • 刊出日期:  2021-04-18

目录

    /

    返回文章
    返回