• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

一种基于差分隐私保护的skyline查询方法

张丽平 杨玉 金飞虎 李松 郝忠孝

张丽平, 杨玉, 金飞虎, 李松, 郝忠孝. 一种基于差分隐私保护的skyline查询方法[J]. 西南交通大学学报, 2022, 57(5): 982-989. doi: 10.3969/j.issn.0258-2724.20200714
引用本文: 张丽平, 杨玉, 金飞虎, 李松, 郝忠孝. 一种基于差分隐私保护的skyline查询方法[J]. 西南交通大学学报, 2022, 57(5): 982-989. doi: 10.3969/j.issn.0258-2724.20200714
ZHANG Liping, YANG Yu, JIN Feihu, LI Song, HAO Zhongxiao. A Skyline Query Method Based on Differential Privacy Protection[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 982-989. doi: 10.3969/j.issn.0258-2724.20200714
Citation: ZHANG Liping, YANG Yu, JIN Feihu, LI Song, HAO Zhongxiao. A Skyline Query Method Based on Differential Privacy Protection[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 982-989. doi: 10.3969/j.issn.0258-2724.20200714

一种基于差分隐私保护的skyline查询方法

doi: 10.3969/j.issn.0258-2724.20200714
基金项目: 国家自然科学基金(61872105,62072136);国家重点研发计划(2020YFB1710200);黑龙江省自然科学基金(LH2020F047);黑龙江省留学归国人员科学基金(LC2018030)
详细信息
    作者简介:

    张丽平(1976—),女,副教授,博士,研究方向为数据处理和数据查询,E-mail:lisongbeifen@163.com

    通讯作者:

    金飞虎(1974—),男,副教授,博士后,研究方向为数据处理和数据查询,E-mail:174469296@qq.com

  • 中图分类号: TP391

A Skyline Query Method Based on Differential Privacy Protection

  • 摘要:

    为了解决差分隐私保护机制中重复攻击会泄露用户隐私的问题,提出了一种基于动态页敏感度调节的skyline查询方法. 首先,提出了依据最优主导页的计算页敏感度方法,提高页敏感度计算的效率;其次,为了合理设置隐私预算值,提出了基于置信率的隐私预算值调节方法;最后,基于隐私预算值动态更新查询次数的上界,实现了基于差分隐私保护的skyline查询方法. 实验结果表明:所提出方法在隐私预算值设定小于0.8时,隐私数据的泄露数由787个降低到423个.

     

  • 图 1  skyline分页查询示例

    Figure 1.  skyline paged query

    图 2  数据规模对查询效率的影响

    Figure 2.  Effect of data size on query efficiency

    图 3  数据规模对查询结果可靠性的影响

    Figure 3.  Effect of data size on the reliability of query results

    图 4  两种策略对查询结果隐私泄露程度的影响

    Figure 4.  Effect of two strategies on the degree of privacy disclosure of query results

    图 5  隐私预算值对隐私泄露程度的影响

    Figure 5.  Effect of privacy budget value on privacy disclosure

    图 6  隐私预算值对skyline查询结果集中准确率的影响

    Figure 6.  Effect of privacy budget value on the accuracy of skyline query result set

    表  1  skyline分页查询结果

    Table  1.   Skyline paged query results

    结果
    1{(P1, O1), (P1, O2), (P1, O3), (P1, O4), (P1, O5)}
    2{(P2, O1), (P2, O2), (P2,O3), (P2, O4), (P2, O5)}
    3{(P3, O1), (P3, O2), (P3, O3), (P3, O4)}
    4{(P4,O1), (P4, O2), (P4, O3)}
    下载: 导出CSV
  • [1] BORZSONY S, KOSSMANN D, STOCKER K. The skyline operator[C]//Proceedings 17th International Conference on Data Engineering. Heidelberg: IEEE, 2001: 421-430.
    [2] SOHAIL A, CHEEMA M A, TANIAR D. Social-aware spatial top-k and skyline queries[J]. The Computer Journal, 2018, 61(11): 1620-1638. doi: 10.1093/comjnl/bxy019
    [3] SANTOSO B J, CONNERY T Y. Answering why-not questions on reverse skyline queries over incomplete data[J]. JUTI: Jurnal Ilmiah Teknologi Informasi, 2019, 17(1): 84-93. doi: 10.12962/j24068535.v17i1.a824
    [4] FORT M, SELLARÈS J A, VALLADARES N. Nearest and farthest spatial skyline queries under multiplicative weighted Euclidean distances[J]. Knowledge-Based Systems, 2020, 192: 105-109.
    [5] 李松, 王冠群, 郝晓红, 等. 面向推荐系统的多目标决策优化算法. 西安交通大学学报, 2022, 56(8): 104-112.

    LI Song, WANG Guanqun, HAO Xiaohong, et al. A multi-objective decision optimization algorithm for recommendation system[J]. Journal of Xi’an Jiaotong University, 2022, 56(8): 104-112.
    [6] 李松,窦雅男,郝晓红,等. 道路网环境下K-支配空间Skyline查询方法[J]. 计算机研究与发展,2020,57(1): 227-239. doi: 10.7544/issn1000-1239.2020.20190026

    LI Song, DOU Yanan, HAO Xiaohong, et al. The method of the K-dominant space skyline query in road network[J]. Journal of Computer Research and Development, 2020, 57(1): 227-239. doi: 10.7544/issn1000-1239.2020.20190026
    [7] 熊玲,彭代渊,彭图,等. 一种高效的移动云服务环境下隐私保护认证协议[J]. 西南交通大学学报,2019,54(1): 202-210.

    XIONG Ling, PENG Daiyuan, PENG Tu, et al. Efficient privacy-preserving authentication protocol for mobile cloud computing services[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 202-210.
    [8] DWORK C. Differential privacy[M]//Automata, Languages and Programming. Berlin: Springer, 2006: 1-12.
    [9] MIRONOV I. Rényi differential privacy[C]//2017 IEEE 30th Computer Security Foundations Symposium. Santa Barbara: IEEE, 2017: 263-275.
    [10] CHAUDHURI K, IMOLA J, MACHANAVAJJHALA A. Capacity bounded differential privacy[J]. Advances in Neural Information Processing Systems, 2019: 3474-3483.
    [11] MCGREGOR A, MIRONOV I, PITASSI T, et al. The limits of two-party differential privacy[C]//2010 IEEE 51st Annual Symposium on Foundations of Computer Science. Las Vegas: IEEE, 2010: 81-90.
    [12] NISSIM K, RASKHODNIKOVA S, SMITH A. Smooth sensitivity and sampling in private data analysis[C]//Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing. San Diego: ACM Press, 2007: 75-84.
    [13] MCSHERRY F, TALWAR K. Mechanism design via differential privacy[C]//48th Annual IEEE Symposium on Foundations of Computer Science. [S.l.]: IEEE, 2007: 94-103.
    [14] HOMAYOUN S, DEHGHANTANHA A, AHMAD- ZADEH M, et al. Know abnormal, find evil:frequent pattern mining for ransomware threat hunting and intelligence[J]. IEEE Transactions on Emerging Topics in Computing, 2020, 8(2): 341-351. doi: 10.1109/TETC.2017.2756908
    [15] DING X F, YANG W L, CHOO K K R, et al. Privacy preserving similarity joins using MapReduce[J]. Information Sciences, 2019, 493: 20-33. doi: 10.1016/j.ins.2019.03.035
    [16] CHENG X, SU S, XU S Z, et al. DP-apriori:a differentially private frequent itemset mining algorithm based on transaction splitting[J]. Computers & Security, 2015, 50: 74-90. doi: 10.1016/j.cose.2014.12.005
    [17] OU L, QIN Z, LIAO S L, et al. Singular spectrum analysis for local differential privacy of classifications in the smart grid[J]. IEEE Internet of Things Journal, 2020, 7(6): 5246-5255. doi: 10.1109/JIOT.2020.2977220
    [18] ZHOU G Q, QIN S, ZHOU H F, et al. A differential privacy noise dynamic allocation algorithm for big multimedia data[J]. Multimedia Tools and Applications, 2019, 78(3): 3747-3765. doi: 10.1007/s11042-018-5776-0
    [19] JUNG T, JUNG K, PARK S, et al. A noise parameter configuration technique to mitigate detour inference attack on differential privacy[C]//2017 IEEE International Conference on Big Data and Smart Computin. Jeju: IEEE, 2017: 186-192.
    [20] XU C G, REN J, ZHANG D Y, et al. GANobfuscator:mitigating information leakage under GAN via differential privacy[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(9): 2358-2371. doi: 10.1109/TIFS.2019.2897874
    [21] YIN C Y, XI J W, SUN R X, et al. Location privacy protection based on differential privacy strategy for big data in industrial Internet of Things[J]. IEEE Transactions on Industrial Informatics, 2018, 14(8): 3628-3636. doi: 10.1109/TII.2017.2773646
    [22] HSU J, GABOARDI M, HAEBERLEN A, et al. Differential privacy: an economic method for choosing epsilon[C]//2014 IEEE 27th Computer Security Foundations Symposium. Vienna: IEEE, 2014: 398-410.
    [23] ZHANG W J, LI M, TANDON R, et al. Online location trace privacy:an information theoretic approach[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(1): 235-250. doi: 10.1109/TIFS.2018.2848659
    [24] LI X G, LI H, ZHU H, et al. The optimal upper bound of the number of queries for Laplace mechanism under differential privacy[J]. Information Sciences, 2019, 503: 219-237. doi: 10.1016/j.ins.2019.07.001
    [25] HUA J F, ZHU H, WANG F W, et al. CINEMA:efficient and privacy-preserving online medical primary diagnosis with skyline query[J]. IEEE Internet of Things Journal, 2019, 6(2): 1450-1461. doi: 10.1109/JIOT.2018.2834156
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  239
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-21
  • 修回日期:  2021-06-07
  • 网络出版日期:  2022-07-19
  • 刊出日期:  2021-09-08

目录

    /

    返回文章
    返回