• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

冰碛湖溃决危险区铁路沿河线方案评价方法

张聪 姚令侃 黄艺丹 邱燕玲 谭礼

张聪, 姚令侃, 黄艺丹, 邱燕玲, 谭礼. 冰碛湖溃决危险区铁路沿河线方案评价方法[J]. 西南交通大学学报, 2022, 57(6): 1311-1318, 1341. doi: 10.3969/j.issn.0258-2724.20200696
引用本文: 张聪, 姚令侃, 黄艺丹, 邱燕玲, 谭礼. 冰碛湖溃决危险区铁路沿河线方案评价方法[J]. 西南交通大学学报, 2022, 57(6): 1311-1318, 1341. doi: 10.3969/j.issn.0258-2724.20200696
ZHANG Cong, YAO Lingkan, HUANG Yidan, QIU Yanling, TAN Li. Evaluation Method of Railway Schemes Along Rivers in Risk Areas of Moraine-Dammed Lake Outburst[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1311-1318, 1341. doi: 10.3969/j.issn.0258-2724.20200696
Citation: ZHANG Cong, YAO Lingkan, HUANG Yidan, QIU Yanling, TAN Li. Evaluation Method of Railway Schemes Along Rivers in Risk Areas of Moraine-Dammed Lake Outburst[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1311-1318, 1341. doi: 10.3969/j.issn.0258-2724.20200696

冰碛湖溃决危险区铁路沿河线方案评价方法

doi: 10.3969/j.issn.0258-2724.20200696
基金项目: 第二次青藏高原综合科学考察研究项目(2021QZKK0202);国家自然科学基金(41571004);国家重点研发计划(2016YFC0802206);四川省重点研发项目(20GJHZ0205)
详细信息
    作者简介:

    张聪(1989—),男,博士研究生,研究方向为复杂艰险山区铁路减灾选线理论与技术,E-mail:zhangcong@my.swjtu.edu.cn

    通讯作者:

    姚令侃(1953—),男,教授,博导,研究方向为复杂艰险山区铁路减灾选线理论与技术,E-mail:yaolk@home.swjtu.edu.cn

  • 中图分类号: U212.3

Evaluation Method of Railway Schemes Along Rivers in Risk Areas of Moraine-Dammed Lake Outburst

  • 摘要:

    为建立青藏高原南缘冰碛湖溃决危险区铁路方案风险评价方法,首先,对青藏高原南缘74例冰碛湖溃决灾害实例溃决机制进行统计分析;在此基础上,针对冰碛湖溃决影响因素众多、关系复杂且具有高度不确定性的特点,利用多态贝叶斯网络建立了冰碛湖溃决概率预测模型;然后,以冰碛湖溃决危险区沿河线路工程为承灾体,综合冰碛湖溃决危险性评估与沿河线河谷地貌特征提出了各类风险区线路长度计算程式,建立了针对冰碛湖溃决危险性的铁路选线方案评价方法;最后,以中尼铁路跨喜马拉雅段的樟木、吉隆局部走向方案为例,说明评价方法的作业程式. 研究结果表明:樟木方案在冰碛湖分布区的线路长度小于吉隆方案,从选线角度属于线路短直方案,但樟木方案各风险区段线路总长超出吉隆方案约45%;从冰碛湖溃决风险角度,吉隆方案优于樟木方案.

     

  • 图 1  青藏高原南缘冰川、冰湖及冰碛湖溃决灾害分布

    Figure 1.  Distributions of glaciers, glacier lakes and moraine-dammed lake outburst events in the southern Tibet Plateau

    图 2  冰碛湖溃决B-Ns模型

    Figure 2.  B-Ns model of moraine-dammedlakes outburstrisk

    图 3  基于B-Ns的冰湖溃决危险性评估程式

    Figure 3.  Risk assessment procedure for moraine-dammed lake outburst based on B-Ns method

    图 4  各类风险区线路长度计算流程

    Figure 4.  Calculation process of the railway line length in different risk areas

    图 5  吉隆、波曲流域危险冰碛湖与线路方案示意

    Figure 5.  Railway schemes and distribution of dangerous moraine-dammed lakes in the Gyirong and Poiqu river

    表  1  青藏高原南缘冰碛湖主要溃决机制统计

    Table  1.   Main outburst mechanisms of the moraine-dammed lakes in the southern Tibet Plateau

    冰碛湖主要溃决机制案例数占比/%
    (冰崩/冰滑坡)涌浪漫顶 46 74.2
    (降雨/冰川融水)洪水漫顶 12 19.4
    管涌 5 8.1
    冰碛物坍塌 5 8.1
    外界动力激发 1 1.6
    下载: 导出CSV

    表  2  根节点因素多区间状态划分标准

    Table  2.   Division of risk factors in multi-interval safety states for root nodes

    二级指标变量二级指标状态值
    01
    x1/(°) < 8 > 8
    x2 < 0.11 > 0.11
    x3/km > 1 < 1
    x4 相对不发育相对较发育
    x5 < 0.23 > 0.23
    x6/m > 60 < 60
    x7 固结松散
    x8 未满水满水
    x9 < 0.20 > 0.20
    x10/(°) < 20 > 20
    x11 无/少量丰富
    x12 < 0.25g > 0.25g
    下载: 导出CSV

    表  3  冰碛湖溃决根节点的先验概率

    Table  3.   Prior probabilities of root nodes of moraine-dammed lake outburst

    节点状态数量先验概率
    状态 1状态 2
    x120.5240.476
    x20.2860.714
    x30.6250.375
    x40.1920.808
    x50.6320.368
    x60.2400.760
    x70.8230.177
    x80.4230.577
    x90.5770.423
    x100.7120.288
    x110.4810.519
    x120.9000.100
    下载: 导出CSV

    表  4  中间节点y1的条件概率

    Table  4.   Conditional probabilities of node y1

    x1x2x3x4x5y1
    012
    0 0 0 0 0 1.0 0 0
    0 0 0 0 1 1.0 0 0
    0 0 0 1 0 1.0 0 0
    0 0 0 1 1 0.2 0.8 0
    0 0 1 0 0 1.0 0 0
    0 0 1 0 1 0.2 0.8 0
    $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
    1 1 1 0 1 0 0.2 0.8
    1 1 1 1 0 0 0.2 0.8
    1 1 1 1 1 0 0 1.0
    下载: 导出CSV

    表  5  铁路方案冰碛湖溃决危险性评价指标

    Table  5.   Evaluation indexes of railway schemes considering moraine-dammed lake outburst risk

    指标名称比选因素
    流域指标冰碛湖总数量/个
    冰碛湖总面积/km2
    历史冰碛湖溃决案例数/次
    线路指标冰碛湖分布区线路总长度/km
    溃决高风险区段线路长度/km
    溃决次高风险区段线路长度/km
    溃决中风险区段线路长度/km
    下载: 导出CSV

    表  6  吉隆、樟木线路方案比选表

    Table  6.   Comparison of the railway schemes in the Gyirong and Poiqu river basins

    指标类型比选因素吉隆樟木
    流域指标 冰碛湖总数量/个 130 121
    冰碛湖总面积/ km2 5.8 17.3
    历史冰碛湖溃决次数/次 2 6
    线路指标 冰碛湖分布区
    线路长度/ km
    107.9 93.5
    冰碛湖溃决高危险区段
    线路长度/ km
    21.2 38.3
    冰碛湖溃决次高危险区
    段线路长度/ km
    54.1 132.0
    冰碛湖溃决中危险区段
    线路长度/ km
    10.5 54.1
    下载: 导出CSV
  • [1] 王欣, 刘时银, 丁永建. 中国喜马拉雅山冰碛湖溃决灾害评价方法与应用研究[M]. 北京: 科学出版社, 2016.
    [2] ZHANG C, HUANG Y D, YAO L K, et al. Prediction of the maximum wave elevation in moraine-dammed lakes during resonant earthquake excitation[J]. Journal of Engineering Mechanics, 2020, 146(2): 04019118.1-04019118.13.
    [3] 徐道明,冯清华. 西藏喜马拉雅山区危险冰湖及其溃决特征[J]. 地理学报,1989,44(3): 343-351,385. doi: 10.3321/j.issn:0375-5444.1989.03.011

    XU Daoming, FENG Qinghua. Dangerous glacial lake and outburst features in Xizang Himalayas[J]. Acta Geographica Sinica, 1989, 44(3): 343-351,385. doi: 10.3321/j.issn:0375-5444.1989.03.011
    [4] 吕儒仁, 唐邦兴, 朱平一, 等. 西藏泥石流与环境[M]. 成都: 成都科技大学出版社, 1999.
    [5] HUGGEL C, KÄÄB A, HAEBERLI W, et al. Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps[J]. Canadian Geotechnical Journal, 2002, 39(2): 316-330. doi: 10.1139/t01-099
    [6] 陈晓清,崔鹏,杨忠,等. 喜马拉雅山中段波曲流域近期冰湖溃决危险性分析与评估[J]. 冰川冻土,2007,29(4): 509-516.

    CHEN Xiaoqing, CUI Peng, YANG Zhong, et al. Risk assessment of glacial lake outburst in the poiqu river basin of Tibet Autonomous Region[J]. Journal of Glaciology and Geocryology, 2007, 29(4): 509-516.
    [7] 舒有锋,王钢城,庄树裕,等. 基于粗糙集的权重确定方法在我国喜马拉雅山地区典型冰碛湖溃决危险性评价中的应用[J]. 水土保持通报,2010,30(5): 109-114. doi: 10.13961/j.cnki.stbctb.2010.05.008

    SHU Youfeng, WANG Gangcheng, ZHUANG Shuyu, et al. A weight determination method based on rough set for hazard assessment of typical moraine-dammed lake outburst in Himalayan region[J]. Bulletin of Soil and Water Conservation, 2010, 30(5): 109-114. doi: 10.13961/j.cnki.stbctb.2010.05.008
    [8] 王欣,刘时银,郭万钦,等. 我国喜马拉雅山区冰碛湖溃决危险性评价[J]. 地理学报,2009,64(7): 782-790. doi: 10.3321/j.issn:0375-5444.2009.07.002

    WANG Xin, LIU Shiyin, GUO Wanqin, et al. Hazard assessment of moraine-dammed lake outburst floods in the Himalayas, China[J]. Acta Geographica Sinica, 2009, 64(7): 782-790. doi: 10.3321/j.issn:0375-5444.2009.07.002
    [9] 马德仲,周真,于晓洋,等. 基于模糊概率的多状态贝叶斯网络可靠性分析[J]. 系统工程与电子技术,2012,34(12): 2607-2611. doi: 10.3969/j.issn.1001-506X.2012.12.35

    MA Dezhong, ZHOU Zhen, YU Xiaoyang, et al. Reliability analysis of multi-state Bayesian networks based on fuzzy probability[J]. Systems Engineering and Electronics, 2012, 34(12): 2607-2611. doi: 10.3969/j.issn.1001-506X.2012.12.35
    [10] 林鹏智,陈宇. 基于贝叶斯网络的梯级水库群漫坝风险分析[J]. 工程科学与技术,2018,50(3): 46-53.

    LIN Pengzhi, CHEN Yu. Risk analysis of dam overtopping for cascade reservoirs based on Bayesian network[J]. Advanced Engineering Sciences, 2018, 50(3): 46-53.
    [11] 程尊兰,田金昌,张正波,等. 藏东南冰湖溃决泥石流形成的气候因素与发展趋势[J]. 地学前缘,2009,16(6): 207-214. doi: 10.3321/j.issn:1005-2321.2009.06.023

    CHENG Zunlan, TIAN Jinchang, ZHANG Zhengbo, et al. Debris flow induced by glacial-lake break in Southeast Tibet[J]. Earth Science Frontiers, 2009, 16(6): 207-214. doi: 10.3321/j.issn:1005-2321.2009.06.023
    [12] 姚晓军,刘时银,孙美平,等. 20世纪以来西藏冰湖溃决灾害事件梳理[J]. 自然资源学报,2014,29(8): 1377-1390.
    [13] NIE Y, LIU Q, WANG J, et al. An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis[J]. Geomorphology, 2018, 308: 91-106.
    [14] ICIMOD. Glacial lakes and glacial lake outburst floods in Nepal[R]. Kathmandu: ICIMOD, 2011.
    [15] KOMORI J, KOIKE T, YAMANOKUCHI T, et al. Glacial lake outburst events in the Bhutan Himalayas[J]. Global Environmental Research, 2012, 16(1): 59-70.
    [16] BHAMBRI R, HEWITT K, KAWISHWAR P, et al. Ice-dams, outburst floods, and movement heterogeneity of glaciers, Karakoram[J]. Global and Planetary Change, 2019, 180: 100-116. doi: 10.1016/j.gloplacha.2019.05.004
    [17] GURUNG D R, KHANAL N R, BAJRACHARYA S R, et al. Lemthang Tsho glacial lake outburst flood (GLOF) in Bhutan: cause and impact[J]. Geoenvironmental Disasters, 2017, 4(17): 1-13. doi: 10.1186/s40677-017-0080-2
    [18] AI H Z, YAO L K, ZHOU Y L. Laboratory investigations of earthquake-and landslide-induced composite surges[J]. Journal of Mountain Science, 2017, 14(8): 1537-1549. doi: 10.1007/s11629-016-4339-y
    [19] 刘宁, 程尊兰, 崔鹏. 堰塞湖及其风险控制[M]. 北京: 科学出版社, 2013.
    [20] WASHAKH R, CHEN N, WANG T, et al. GLOF risk assessment model in the Himalayas: a case study of a Hydropower project in the upper Arun river[J]. Water, 2019, 11(9): 1-23. doi: 10.3390/w11091839
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  144
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-15
  • 修回日期:  2021-01-24
  • 网络出版日期:  2022-08-29
  • 刊出日期:  2021-04-29

目录

    /

    返回文章
    返回