• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

大跨度双层桁架梁悬索桥颤振性能试验研究

雷永富 李明 孙延国 李明水

雷永富, 李明, 孙延国, 李明水. 大跨度双层桁架梁悬索桥颤振性能试验研究[J]. 西南交通大学学报, 2022, 57(6): 1224-1232. doi: 10.3969/j.issn.0258-2724.20200599
引用本文: 雷永富, 李明, 孙延国, 李明水. 大跨度双层桁架梁悬索桥颤振性能试验研究[J]. 西南交通大学学报, 2022, 57(6): 1224-1232. doi: 10.3969/j.issn.0258-2724.20200599
LEI Yongfu, LI Ming, SUN Yanguo, LI Mingshui. Experimental Study on Flutter Performance of Long-Span Suspension Bridge with Double-Deck Truss Girder[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1224-1232. doi: 10.3969/j.issn.0258-2724.20200599
Citation: LEI Yongfu, LI Ming, SUN Yanguo, LI Mingshui. Experimental Study on Flutter Performance of Long-Span Suspension Bridge with Double-Deck Truss Girder[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1224-1232. doi: 10.3969/j.issn.0258-2724.20200599

大跨度双层桁架梁悬索桥颤振性能试验研究

doi: 10.3969/j.issn.0258-2724.20200599
基金项目: 国家自然科学基金(51878580);四川省科技计划(2020YJ0306)
详细信息
    作者简介:

    雷永富(1994—),男,博士研究生,研究方向为结构风工程,E-mail:yflei@my.swjtu.edu.cn

    通讯作者:

    李明(1990—),男,副研究员,博士,研究方向为桥梁及结构风工程、钝体空气动力学,E-mail:liming_bridge@163.com

  • 中图分类号: U441.3

Experimental Study on Flutter Performance of Long-Span Suspension Bridge with Double-Deck Truss Girder

  • 摘要:

    为提高大跨度双层桁架梁悬索桥的颤振性能,以主跨为1 700 m的杨泗港长江大桥为工程背景,通过节段模型风洞试验,分别研究了上中央稳定板、下稳定板、水平翼板以及组合措施对主梁颤振性能的影响,并通过将有效气动措施与主梁原有构件相结合的方法来减小传统气动措施带来的不利影响,针对最优气动方案,研究了阻尼比对主梁颤振性能的影响. 研究结果表明:原主梁断面在0° 和 +3° 攻角下发生了没有明显发散点的单自由度扭转软颤振,颤振临界风速分别为50.5 m/s和31.2 m/s;安装于上层桥面的上中央稳定板、下层桥面的下稳定板以及与人行道底部齐平的水平翼板均能不同程度地提高主梁的颤振稳定性;当把水平翼板与下层桥面的下稳定板组合后,主梁的颤振临界风速增长率可高达34%,在此基础上提出了将上层托架和人行道板加宽、并将下稳定板和检修车轨道相结合的最优气动方案;当扭转阻尼比由0.37%增加至0.52%时,主梁的颤振临界风速可提高11.9%,说明阻尼器可能对发生单自由度扭转软颤振的桥梁起到良好的抑振效果.

     

  • 图 1  杨泗港长江大桥总布置(单位:m)

    Figure 1.  General layout of the Yangsigang Yangtze River Bridge (unit:m)

    图 2  主梁横断面(单位:m)

    Figure 2.  Cross-section of main girder (unit:m)

    图 3  风洞中的桥梁节段模型

    Figure 3.  Section model of main girder in the wind tunnel

    图 4  主梁的扭转位移均方根值随风速变化曲线

    Figure 4.  Variation of the standard deviation of torsional displacements of main girder with the wind speed

    图 5  +3° 攻角下主梁软颤振位移时程与相位图

    Figure 5.  Time history and phase diagram of soft flutter displacements of main girder at an attack angle of +3°

    图 6  上中央稳定板示意

    Figure 6.  Schematic of the upper central stabilizers

    图 7  上中央稳定板对主梁颤振性能的影响

    Figure 7.  Effect of the upper central stabilizer on the flutter performance of the main truss girder

    图 8  下稳定板示意

    Figure 8.  Schematic diagram of the lower stabilizers

    图 9  下稳定板对主梁颤振性能的影响

    Figure 9.  Effect of the lower stabilizers on the flutter performance of the main truss girder

    图 10  水平翼板示意

    Figure 10.  Schematic of the horizontal flap

    图 11  水平翼板对主梁颤振性能的影响

    Figure 11.  Effect of the horizontal flap on the flutter performance of the main truss girder

    图 12  组合措施示意

    Figure 12.  Schematic of combined measures

    图 13  水平翼板与下稳定板组合对主梁颤振稳定性的影响

    Figure 13.  Effect of the combination of the horizontal flap and the lower stabilizer on the flutter performance of main girder

    图 14  优化桁架梁断面

    Figure 14.  Cross-section of the optimized truss girder

    图 15  系统扭转阻尼比对主梁颤振临界风速的影响

    Figure 15.  Effect of system torsional damping ratio on the critical flutter wind speed of the main girder

    图 16  不同阻尼比条件下最优气动方案主梁的扭转位移响应

    Figure 16.  Torsional response of the optimal truss girder in different damping ratio conditions

    表  1  节段模型主要试验参数

    Table  1.   Main test parameters of section model

    参数名称符号缩尺比实桥值理论值实际值
    主桁高/m H 1∶52.67 10.00 0.19 0.19
    主桁宽/m B 1∶52.67 28.000 0.532 0.532
    单位长度质量/(kg•m−1 m 1∶52.672 53 027.00 19.13 19.14
    单位长度质量惯矩/(kg•m) I 1∶52.674 7 465 823.000 0.970 0.979
    一阶竖弯频率/Hz f1 0.117 1.695
    一阶扭转频率/Hz f2 0.284 4.095
    竖弯阻尼比/% ζ1 1 0.50 0.36
    扭转阻尼比/% ζ2 1 0.50 0.37
    扭弯频率比 ε 1 2.418 2.418 2.417
    下载: 导出CSV
  • [1] 李永乐,徐昕宇,郭建明,等. 六线双层铁路钢桁桥车桥系统气动特性风洞试验研究[J]. 工程力学,2016,33(4): 130-135.

    LI Yongle, XU Xinyu, GUO Jianming, et al. Wind tunnel tests on aerodynamic characteristics of vehicle-bridge system for six-track double-deck steel-truss railway bridge[J]. Engineering Mechanics, 2016, 33(4): 130-135.
    [2] MIYATA T, YAMAGUCHI K. Aerodynamics of wind effects on the Akashi Kaikyo bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 48(2/3): 287-315.
    [3] 李春光,张志田,陈政清,等. 桁架加劲梁悬索桥气动稳定措施试验研究[J]. 振动与冲击,2008,27(9): 40-43,181. doi: 10.3969/j.issn.1000-3835.2008.09.010

    LI Chunguang, ZHANG Zhitian, CHEN Zhengqing, et al. Experimential study on the aerodynamic stability measure of a suspension bridge with truss stiffening girder[J]. Journal of Vibration and Shock, 2008, 27(9): 40-43,181. doi: 10.3969/j.issn.1000-3835.2008.09.010
    [4] WANG K, LIAO H L, LI M S. Flutter suppression of long-span suspension bridge with truss girder[J]. Wind and Structures, 2016, 23(5): 405-420. doi: 10.12989/was.2016.23.5.405
    [5] XU H T, LIAO H L, HE Y, et al. Wind tunnel test of aerodynamic optimization measures for flutter stability of super long-span bridge with truss girder[J]. Journal of Highway and Transportation Research and Development (English Edition), 2011, 5(2): 49-54. doi: 10.1061/JHTRCQ.0000064
    [6] UEDA T, YASUDA M, NAKAGAKI R. Mechanism of aerodynamic stabilization for long-span suspension bridge with stiffening truss-girder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 33(1/2): 333-340.
    [7] 陈政清,欧阳克俭,牛华伟,等. 中央稳定板提高桁架梁悬索桥颤振稳定性的气动机理[J]. 中国公路学报,2009,22(6): 53-59. doi: 10.3321/j.issn:1001-7372.2009.06.008

    CHEN Zhengqing, OUYANG Kejian, NIU Huawei, et a1. Aerodynamic mechanism of improvement of flutter stability of truss-girder suspension bridge using central stabilizer[J]. China Journal of Highway and Transport, 2009, 22(6): 53-59. doi: 10.3321/j.issn:1001-7372.2009.06.008
    [8] 欧阳克俭,陈政清. 中央稳定板提高颤振稳定性能的细观作用机理[J]. 振动与冲击,2016,35(1): 11-16.

    OUYANG Kejian, CHEN Zhengqing. Micro-mechanism of a central stabilizer for improving a bridge’s flutter stability[J]. Journal of Vibration and Shock, 2016, 35(1): 11-16.
    [9] 李加武,车鑫,高斐,等. 窄悬索桥颤振失稳控制措施效果研究[J]. 振动与冲击,2012,31(23): 77-81,86.

    LI Jiawu, CHE Xin, GAO Fei, et al. Effects of wind-resistant control measures against flutter instability of a narrow suspension bridge[J]. Journal of Vibration and Shock, 2012, 31(23): 77-81,86.
    [10] TANG H J, LI Y L, WANG Y F, et al. Aerodynamic optimization for flutter performance of steel truss stiffening girder at large angles of attack[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168: 260-270. doi: 10.1016/j.jweia.2017.06.013
    [11] 李明,孙延国,李明水. 大跨度钢桁梁悬索桥颤振稳定措施试验研究[J]. 振动与冲击,2018,37(13): 182-189.

    LI Ming, SUN Yanguo, LI Mingshui. Tests for flutter stability measures of a long-span suspension bridge with steel truss girders[J]. Journal of Vibration and Shock, 2018, 37(13): 182-189.
    [12] 徐昕宇,李永乐,廖海黎,等. 双层桥面桁架梁三塔悬索桥颤振性能优化风洞试验[J]. 工程力学,2017,34(5): 142-147.

    XU Xinyu, LI Yongle, LIAO Haili, et al. Flutter optimization of a double-deck truss-stiffened girder three-tower suspension bridge by wind tunnel tests[J]. Engineering Mechanics, 2017, 34(5): 142-147.
    [13] LI Y L, TANG H J, WU B, et al. Flutter performance optimization of steel truss girder with double-decks by wind tunnel tests[J]. Advances in Structural Engineering, 2018, 21(6): 906-917. doi: 10.1177/1369433217734637
    [14] 徐爱军,王凯,李明水,等. 板-桁组合式钢桁梁悬索桥颤振稳定性选型研究[J]. 实验流体力学,2015,29(4): 52-57. doi: 10.11729/syltlx20150051

    XU Aijun, WANG Kai, LI Mingshui, et al. Flutter stability selection study of a long-span steel truss suspension bridge with a combined deck plate[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 52-57. doi: 10.11729/syltlx20150051
    [15] 中华人民共和国交通部. 公路桥梁抗风设计规范: JTG/T 3360-01—2018[S]. 北京: 人民交通出版社, 2018.
    [16] CHEN X Z, KAREEM A. Efficacy of tuned mass dampers for bridge flutter control[J]. Journal of Structural Engineering, 2003, 129(10): 1291-1300. doi: 10.1061/(ASCE)0733-9445(2003)129:10(1291)
    [17] GAO G Z, ZHU L D. Measurement and verification of unsteady galloping force on a rectangular 2∶1 cylinder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 157: 76-94. doi: 10.1016/j.jweia.2016.08.004
    [18] 郑史雄,郭俊峰,朱进波,等. П 型断面主梁软颤振特性及抑制措施研究[J]. 西南交通大学学报,2017,52(3): 458-465.

    ZHENG Shixiong, GUO Junfeng, ZHU Jinbo, et al. Characteristics and suppression neasures for soft flutter of main girder with П-shaped cross section[J]. Journal of Southwest Jiaotong University, 2017, 52(3): 458-465.
    [19] 朱乐东,高广中. 典型桥梁断面软颤振现象及影响因素[J]. 同济大学学报(自然科学版),2015,43(9): 1289-1294,1382.

    ZHU Ledong, GAO Guangzhong. Influential factors of soft flutter phenomenon for typical bridge deck sections[J]. Journal of Tongji University (Natural Science), 2015, 43(9): 1289-1294,1382.
    [20] 李明,孙延国,李明水,等. 宽幅流线型箱梁涡振性能及制振措施研究[J]. 西南交通大学学报,2018,53(4): 712-719. doi: 10.3969/j.issn.0258-2724.2018.04.007

    LI Ming, SUN Yanguo, LI Mingshui, et al. Vortex-induced vibration performance of wide streamlined box girder and aerodynamic countermeasure research[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 712-719. doi: 10.3969/j.issn.0258-2724.2018.04.007
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  113
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-05
  • 修回日期:  2020-11-05
  • 网络出版日期:  2022-08-03
  • 刊出日期:  2020-11-11

目录

    /

    返回文章
    返回