Experimental Study on Flutter Performance of Long-Span Suspension Bridge with Double-Deck Truss Girder
-
摘要:
为提高大跨度双层桁架梁悬索桥的颤振性能,以主跨为1 700 m的杨泗港长江大桥为工程背景,通过节段模型风洞试验,分别研究了上中央稳定板、下稳定板、水平翼板以及组合措施对主梁颤振性能的影响,并通过将有效气动措施与主梁原有构件相结合的方法来减小传统气动措施带来的不利影响,针对最优气动方案,研究了阻尼比对主梁颤振性能的影响. 研究结果表明:原主梁断面在0° 和 +3° 攻角下发生了没有明显发散点的单自由度扭转软颤振,颤振临界风速分别为50.5 m/s和31.2 m/s;安装于上层桥面的上中央稳定板、下层桥面的下稳定板以及与人行道底部齐平的水平翼板均能不同程度地提高主梁的颤振稳定性;当把水平翼板与下层桥面的下稳定板组合后,主梁的颤振临界风速增长率可高达34%,在此基础上提出了将上层托架和人行道板加宽、并将下稳定板和检修车轨道相结合的最优气动方案;当扭转阻尼比由0.37%增加至0.52%时,主梁的颤振临界风速可提高11.9%,说明阻尼器可能对发生单自由度扭转软颤振的桥梁起到良好的抑振效果.
Abstract:In order to improve the flutter performance of a long-span suspension bridge with a double-deck truss girder, the Yangsigang Yangtze River Bridge with a main span of 1700 m was taken as the engineering prototype to conduct section model wind tunnel tests, to study the effects of the upper central stabilizers, lower stabilizers, horizontal flaps and their combinations on the flutter performance of the bridge girder. Then, the effective aerodynamic measures were combined with the truss girder components to reduce the adverse effects of traditional aerodynamic measures. Finally, for the optimal aerodynamic scheme, the influence of damping ratio on the flutter performance of the optimized bridge girder was investigated. The results show that the single-degree-of-freedom torsional soft flutter with no evident divergent point has occurred to the bridge girder in the original design at attack angles of 0° and +3°, and the corresponding critical flutter wind speeds are 50.5 m/s and 31.2 m/s, respectively. The upper central stabilizers installed on the upper deck, the lower stabilizers installed below the lower deck, and the horizontal flaps installed at the level of the bottom of sidewalk can improve the flutter performance of the double-deck truss girder to varying degrees. The critical flutter wind speed of the main girder can be increased by over 34% by combining the horizontal flaps and lower stabilizers installed at the lower deck. On this basis, an optimal aerodynamic scheme is proposed to broaden the upper bracket and sidewalk plate, and combine the lower stabilizer with the track of the maintenance vehicle. Meanwhile, it is found that the critical flutter wind speed of the main girder can increase by 11.9% when the system torsional damping ratio increases from 0.37% to 0.52%. This indicates that the dampers may be efficient in suppressing the soft flutter of bridges with single-degree-of-freedom torsional vibrations.
-
Key words:
- double-deck truss girder /
- suspension bridge /
- flutter /
- aerodynamic measure /
- wind tunnel test
-
表 1 节段模型主要试验参数
Table 1. Main test parameters of section model
参数名称 符号 缩尺比 实桥值 理论值 实际值 主桁高/m H 1∶52.67 10.00 0.19 0.19 主桁宽/m B 1∶52.67 28.000 0.532 0.532 单位长度质量/(kg•m−1) m 1∶52.672 53 027.00 19.13 19.14 单位长度质量惯矩/(kg•m) I 1∶52.674 7 465 823.000 0.970 0.979 一阶竖弯频率/Hz f1 0.117 1.695 一阶扭转频率/Hz f2 0.284 4.095 竖弯阻尼比/% ζ1 1 0.50 0.36 扭转阻尼比/% ζ2 1 0.50 0.37 扭弯频率比 ε 1 2.418 2.418 2.417 -
[1] 李永乐,徐昕宇,郭建明,等. 六线双层铁路钢桁桥车桥系统气动特性风洞试验研究[J]. 工程力学,2016,33(4): 130-135.LI Yongle, XU Xinyu, GUO Jianming, et al. Wind tunnel tests on aerodynamic characteristics of vehicle-bridge system for six-track double-deck steel-truss railway bridge[J]. Engineering Mechanics, 2016, 33(4): 130-135. [2] MIYATA T, YAMAGUCHI K. Aerodynamics of wind effects on the Akashi Kaikyo bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 48(2/3): 287-315. [3] 李春光,张志田,陈政清,等. 桁架加劲梁悬索桥气动稳定措施试验研究[J]. 振动与冲击,2008,27(9): 40-43,181. doi: 10.3969/j.issn.1000-3835.2008.09.010LI Chunguang, ZHANG Zhitian, CHEN Zhengqing, et al. Experimential study on the aerodynamic stability measure of a suspension bridge with truss stiffening girder[J]. Journal of Vibration and Shock, 2008, 27(9): 40-43,181. doi: 10.3969/j.issn.1000-3835.2008.09.010 [4] WANG K, LIAO H L, LI M S. Flutter suppression of long-span suspension bridge with truss girder[J]. Wind and Structures, 2016, 23(5): 405-420. doi: 10.12989/was.2016.23.5.405 [5] XU H T, LIAO H L, HE Y, et al. Wind tunnel test of aerodynamic optimization measures for flutter stability of super long-span bridge with truss girder[J]. Journal of Highway and Transportation Research and Development (English Edition), 2011, 5(2): 49-54. doi: 10.1061/JHTRCQ.0000064 [6] UEDA T, YASUDA M, NAKAGAKI R. Mechanism of aerodynamic stabilization for long-span suspension bridge with stiffening truss-girder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 33(1/2): 333-340. [7] 陈政清,欧阳克俭,牛华伟,等. 中央稳定板提高桁架梁悬索桥颤振稳定性的气动机理[J]. 中国公路学报,2009,22(6): 53-59. doi: 10.3321/j.issn:1001-7372.2009.06.008CHEN Zhengqing, OUYANG Kejian, NIU Huawei, et a1. Aerodynamic mechanism of improvement of flutter stability of truss-girder suspension bridge using central stabilizer[J]. China Journal of Highway and Transport, 2009, 22(6): 53-59. doi: 10.3321/j.issn:1001-7372.2009.06.008 [8] 欧阳克俭,陈政清. 中央稳定板提高颤振稳定性能的细观作用机理[J]. 振动与冲击,2016,35(1): 11-16.OUYANG Kejian, CHEN Zhengqing. Micro-mechanism of a central stabilizer for improving a bridge’s flutter stability[J]. Journal of Vibration and Shock, 2016, 35(1): 11-16. [9] 李加武,车鑫,高斐,等. 窄悬索桥颤振失稳控制措施效果研究[J]. 振动与冲击,2012,31(23): 77-81,86.LI Jiawu, CHE Xin, GAO Fei, et al. Effects of wind-resistant control measures against flutter instability of a narrow suspension bridge[J]. Journal of Vibration and Shock, 2012, 31(23): 77-81,86. [10] TANG H J, LI Y L, WANG Y F, et al. Aerodynamic optimization for flutter performance of steel truss stiffening girder at large angles of attack[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168: 260-270. doi: 10.1016/j.jweia.2017.06.013 [11] 李明,孙延国,李明水. 大跨度钢桁梁悬索桥颤振稳定措施试验研究[J]. 振动与冲击,2018,37(13): 182-189.LI Ming, SUN Yanguo, LI Mingshui. Tests for flutter stability measures of a long-span suspension bridge with steel truss girders[J]. Journal of Vibration and Shock, 2018, 37(13): 182-189. [12] 徐昕宇,李永乐,廖海黎,等. 双层桥面桁架梁三塔悬索桥颤振性能优化风洞试验[J]. 工程力学,2017,34(5): 142-147.XU Xinyu, LI Yongle, LIAO Haili, et al. Flutter optimization of a double-deck truss-stiffened girder three-tower suspension bridge by wind tunnel tests[J]. Engineering Mechanics, 2017, 34(5): 142-147. [13] LI Y L, TANG H J, WU B, et al. Flutter performance optimization of steel truss girder with double-decks by wind tunnel tests[J]. Advances in Structural Engineering, 2018, 21(6): 906-917. doi: 10.1177/1369433217734637 [14] 徐爱军,王凯,李明水,等. 板-桁组合式钢桁梁悬索桥颤振稳定性选型研究[J]. 实验流体力学,2015,29(4): 52-57. doi: 10.11729/syltlx20150051XU Aijun, WANG Kai, LI Mingshui, et al. Flutter stability selection study of a long-span steel truss suspension bridge with a combined deck plate[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 52-57. doi: 10.11729/syltlx20150051 [15] 中华人民共和国交通部. 公路桥梁抗风设计规范: JTG/T 3360-01—2018[S]. 北京: 人民交通出版社, 2018. [16] CHEN X Z, KAREEM A. Efficacy of tuned mass dampers for bridge flutter control[J]. Journal of Structural Engineering, 2003, 129(10): 1291-1300. doi: 10.1061/(ASCE)0733-9445(2003)129:10(1291) [17] GAO G Z, ZHU L D. Measurement and verification of unsteady galloping force on a rectangular 2∶1 cylinder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 157: 76-94. doi: 10.1016/j.jweia.2016.08.004 [18] 郑史雄,郭俊峰,朱进波,等. П 型断面主梁软颤振特性及抑制措施研究[J]. 西南交通大学学报,2017,52(3): 458-465.ZHENG Shixiong, GUO Junfeng, ZHU Jinbo, et al. Characteristics and suppression neasures for soft flutter of main girder with П-shaped cross section[J]. Journal of Southwest Jiaotong University, 2017, 52(3): 458-465. [19] 朱乐东,高广中. 典型桥梁断面软颤振现象及影响因素[J]. 同济大学学报(自然科学版),2015,43(9): 1289-1294,1382.ZHU Ledong, GAO Guangzhong. Influential factors of soft flutter phenomenon for typical bridge deck sections[J]. Journal of Tongji University (Natural Science), 2015, 43(9): 1289-1294,1382. [20] 李明,孙延国,李明水,等. 宽幅流线型箱梁涡振性能及制振措施研究[J]. 西南交通大学学报,2018,53(4): 712-719. doi: 10.3969/j.issn.0258-2724.2018.04.007LI Ming, SUN Yanguo, LI Mingshui, et al. Vortex-induced vibration performance of wide streamlined box girder and aerodynamic countermeasure research[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 712-719. doi: 10.3969/j.issn.0258-2724.2018.04.007