• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

计及逆变回馈装置间歇工作制的城轨供电计算

刘炜 李由 张戬 张浩 张岩

刘炜, 李由, 张戬, 张浩, 张岩. 计及逆变回馈装置间歇工作制的城轨供电计算[J]. 西南交通大学学报, 2022, 57(2): 384-391. doi: 10.3969/j.issn.0258-2724.20200594
引用本文: 刘炜, 李由, 张戬, 张浩, 张岩. 计及逆变回馈装置间歇工作制的城轨供电计算[J]. 西南交通大学学报, 2022, 57(2): 384-391. doi: 10.3969/j.issn.0258-2724.20200594
LIU Wei, LI You, ZHANG Jian, ZHANG Hao, ZHANG Yan. Calculation of Urban Rail AC/DC Power Supply with Intermittent Duty of Inverter Feedback Devices[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 384-391. doi: 10.3969/j.issn.0258-2724.20200594
Citation: LIU Wei, LI You, ZHANG Jian, ZHANG Hao, ZHANG Yan. Calculation of Urban Rail AC/DC Power Supply with Intermittent Duty of Inverter Feedback Devices[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 384-391. doi: 10.3969/j.issn.0258-2724.20200594

计及逆变回馈装置间歇工作制的城轨供电计算

doi: 10.3969/j.issn.0258-2724.20200594
基金项目: 国家自然科学基金(51607148)
详细信息
    作者简介:

    刘炜(1982—),副教授,博士生导师,研究方向为城市轨道牵引供电系统理论与仿真、再生制动能量利用、杂散电流及钢轨电位,E-mail:liuwei_8208@swjtu.cn

  • 中图分类号: TM922.3;U223.6

Calculation of Urban Rail AC/DC Power Supply with Intermittent Duty of Inverter Feedback Devices

  • 摘要:

    逆变回馈装置在实际运行中采用间歇工作制,当采用供电计算确定逆变回馈装置的选址和容量设计时,必须考虑逆变回馈装置的工作特性模型. 为此,提出了一种考虑逆变回馈装置间歇工作制的城市轨道交直流供电计算算法. 该算法基于逆变回馈装置的功率提出了逆变回馈装置负荷过程的动态调整策略,并实现其状态切换;从主变电所统计整条线路的全日能耗,分析不同逆变回馈装置启动电压、整流机组空载电压和列车发车对数对城市轨道供电系统能耗的影响. 本文算法与实际工程中的逆变回馈装置负荷过程更加吻合. 以实际地铁工程为例对线路进行了仿真,仿真结果表明:逆变回馈装置的启动电压会影响系统的节能效果;投入逆变回馈装置并选取合适的启动电压对供电系统具有明显的节能效果,相比不安装逆变回馈装置的系统可节省12.23%的能耗;当整流机组空载电压较高,或当发车对数稀少时,适当降低逆变回馈装置的启动电压可以获得更佳的节能效果.

     

  • 图 1  逆变回馈装置工作特性曲线

    Figure 1.  Working characteristic curve of inverter feedback devices

    图 2  改进的城市轨道交直流供电计算算法流程

    Figure 2.  Improved algorithm flow of urban rail AC/DC power supply calculation

    图 3  广州地铁某实际线路供电系统简图

    Figure 3.  Outline of power supply system of an actual Guangzhou metro line

    图 4  算法改进前后及实测的逆变回馈装置直流电流

    Figure 4.  Measured and calculated DC currents of inverter feedback devices by original algorithm and improved one

    图 5  算法改进前后及实测的逆变回馈装置占空比

    Figure 5.  Measured and calculated duty cycles of inverter feedback device by original algorithm and improved one

    图 6  不同βCs情况下的W

    Figure 6.  W varying under different β and Cs

    图 7  Cs = 6.86时,不同Ud0β情况下的W

    Figure 7.  W varying under different Ud0 and β at Cs = 6.86

    图 8  Cs = 20.00时,不同Ud0β情况下的W

    Figure 8.  W varying under different Ud0 and β at Cs = 20.00

    图 9  不同Ud0时,情况1下ββW-min时的W与情况2下的W

    Figure 9.  With different Ud0, W change in case 1 when β= βW-min and in case 2

    表  1  逆变回馈装置工作制

    Table  1.   Working strategy of inverter feedback devices

    工作制工作制示意图时间/sInσn
    Ⅰ型ton=30,
    T=120
    Ir/21/4
    Ⅱ型ton=30,
    T=90
    Ir/31/9
    Ⅲ型ton=10 + 30,
    T=180
    Ir/31/9
    下载: 导出CSV

    表  2  不同Cs下的βW-minW

    Table  2.   βW-min and W under different Cs

    Ud0/VCs = 6.86Cs = 20.00
    βW-minW/(MW•h)βW-minW/(MW•h)
    16000.316132.0580.421246.874
    16200.294132.1450.412246.837
    16400.267132.3290.400246.849
    16600.231132.5900.385247.083
    16800.18132.9440.364247.695
    17000.111133.6410.333249.013
    17200.143134.5730.286251.226
    17400.100135.6070.200254.402
    下载: 导出CSV

    表  3  不同Cs下的系统节能率

    Table  3.   Energy saving rate of system under different Cs %

    Ud0/VCs=6.86Cs=20.00Ud0/VCs=6.86Cs=20.00
    16008.0210.6416809.7312.99
    16208.4611.21170010.2413.62
    16408.8011.83172010.7514.11
    16609.4112.46174011.3615.06
    下载: 导出CSV
  • [1] ZHANG G, QIAN J L, ZHANG X Y. Application of a high-power reversible converter in a hybrid traction power supply system[J]. Applied Sciences, 2017, 7(3): 282. doi: 10.3390/app7030282
    [2] 中国城市轨道交通协会. 中国城市轨道交通智慧城轨发展纲要[J]. 现代城市轨道交通,2020,8(4): 8-23.

    China Association of Metros. Smart urban rail development outline of urban rail transit in China[J]. Modern Urban Transit, 2020, 8(4): 8-23.
    [3] 胡海涛,王江峰,何正友,等. 地铁牵引供电系统交-直流潮流算法研究[J]. 铁道学报,2012,34(11): 22-28. doi: 10.3969/j.issn.1001-8360.2012.11.004

    HU Haitao, WANG Jiangfeng, HE Zhengyou, et al. Study on power flow algorithm for metro traction supply system[J]. Journal of the China Railway Society, 2012, 34(11): 22-28. doi: 10.3969/j.issn.1001-8360.2012.11.004
    [4] BEERTEN J, COLE S, BELMANS R. Generalized steady-state VSC MTDC model for sequential AC/DC power flow algorithms[J]. IEEE Transactions on Power Systems, 2012, 27(2): 821-829. doi: 10.1109/TPWRS.2011.2177867
    [5] 柴润泽,张保会,薄志谦. 含电压源型换流器直流电网的交直流网络潮流交替迭代方法[J]. 电力系统自动化,2015,39(7): 7-13. doi: 10.7500/AEPS20140514005

    CHAI Runze, ZHANG Baohui, BO Zhiqian. Alternating iterative power flow algorithm for hybrid AC/DC networks containing DC grid based on voltage source converter[J]. Automation of Electric Power Systems, 2015, 39(7): 7-13. doi: 10.7500/AEPS20140514005
    [6] ARBOLEYA P, MOHAMED B, EL-SAYED I. DC railway simulation including controllable power electronic and energy storage devices[J]. IEEE Transactions on Power Systems, 2018, 33(5): 5319-5329. doi: 10.1109/TPWRS.2018.2801023
    [7] 刘炜,娄颖,张戬,等. 计及城市轨道逆变回馈装置的交直流统一供电计算[J]. 电工技术学报,2019,34(20): 4381-4391.

    LIU Wei, LOU Ying, ZHANG Jian, et al. Unified AC/DC power supply calculation taking into account urban rail inverter feedback devices[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4381-4391.
    [8] 刘炜,张扬鑫,张戬,等. 考虑牵引所多运行状态的城轨交直流供电计算[J]. 西南交通大学学报,2020,55(6): 1163-1170. doi: 10.3969/j.issn.0258-2724.20190854

    LIU Wei, ZHANG Yangxin, ZHANG Jian, et al. Calculation of urban rail AC/DC power supply with traction substation in multioperation modes[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1163-1170. doi: 10.3969/j.issn.0258-2724.20190854
    [9] 张驰,谭南林,刘敏杰,等. 地铁再生制动系统仿真及节能优化研究[J]. 中国铁道科学,2019,40(3): 112-118. doi: 10.3969/j.issn.1001-4632.2019.03.16

    ZHANG Chi, TAN Nanlin, LIU Minjie, et al. Research on simulation and energy saving optimization of regenerative braking system for subway[J]. China Railway Science, 2019, 40(3): 112-118. doi: 10.3969/j.issn.1001-4632.2019.03.16
    [10] ZHANG G, TIAN Z B, TRICOLI P, et al. Inverter operating characteristics optimization for DC traction power supply systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3400-3410. doi: 10.1109/TVT.2019.2899165
    [11] 刘志刚,郝峰杰,陈杰,等. 城轨牵引供电系统车-地配合参数优化方法[J]. 北京交通大学学报,2019,43(1): 79-87. doi: 10.11860/j.issn.1673-0291.2019.01.009

    LIU Zhigang, HAO Fengjie, CHEN Jie, et al. Optimization method of train-ground coordination parameters for urban traction power supply system[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 79-87. doi: 10.11860/j.issn.1673-0291.2019.01.009
    [12] CHUANG H J, CHEN C S, LIN C H, et al. Optimization of inverter placement for mass rapid transit systems using genetic algorithm[C]//Transmission and Distribution Conference and Exhibition: Asia and Pacific. [S.l.]: IEEE, 2005: 1546968.1-1546968.6.
    [13] 国家市场监督管理总局, 国家标准化管理委员会. 城市轨道交通再生制动能量吸收逆变装置: GB/T 37423—2019[S]. 北京: 中国标准出版社, 2019.
    [14] 崔恒斌,冯晓云,林轩,等. 牵引网与交直交列车耦合系统谐波谐振特性仿真研究[J]. 中国电机工程学报,2014,34(16): 2736-2745.

    CUI Hengbin, FENG Xiaoyun, LIN Xuan, et al. Simulation study of the harmonic resonance characteristics of the coupling system with a traction network and AC-DC-AC trains[J]. Proceedings of the CSEE, 2014, 34(16): 2736-2745.
    [15] 沈小军,曹戈. 基于压阻数的城轨交通地面储能系统选址方法[J]. 中国铁道科学,2020,41(1): 99-107.

    SHEN Xiaojun, CAO Ge. A site selection method of stationary energy storage system for urban rail transit based on number of low voltage and braking resistor[J]. China Railway Science, 2020, 41(1): 99-107.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  173
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-02
  • 修回日期:  2020-11-09
  • 网络出版日期:  2020-12-16
  • 刊出日期:  2020-12-16

目录

    /

    返回文章
    返回