• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

沉管隧道接头剪力键抗震性能及减震措施

程新俊 景立平 崔杰 梁海安 徐琨鹏

程新俊, 景立平, 崔杰, 梁海安, 徐琨鹏. 沉管隧道接头剪力键抗震性能及减震措施[J]. 西南交通大学学报, 2022, 57(6): 1208-1216. doi: 10.3969/j.issn.0258-2724.20200548
引用本文: 程新俊, 景立平, 崔杰, 梁海安, 徐琨鹏. 沉管隧道接头剪力键抗震性能及减震措施[J]. 西南交通大学学报, 2022, 57(6): 1208-1216. doi: 10.3969/j.issn.0258-2724.20200548
CHENG Xinjun, JING Liping, CUI Jie, LIANG Haian, XU Kunpeng. Seismic Performance and Damping Measures of Shear Keys for Immersed Tunnel Joints[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1208-1216. doi: 10.3969/j.issn.0258-2724.20200548
Citation: CHENG Xinjun, JING Liping, CUI Jie, LIANG Haian, XU Kunpeng. Seismic Performance and Damping Measures of Shear Keys for Immersed Tunnel Joints[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1208-1216. doi: 10.3969/j.issn.0258-2724.20200548

沉管隧道接头剪力键抗震性能及减震措施

doi: 10.3969/j.issn.0258-2724.20200548
基金项目: 国家重点研发计划(2016YFC0800205);国家自然科学基金(52008081)
详细信息
    作者简介:

    程新俊(1988—),男,讲师,博士,研究方向为地下结构抗震,E-mail:chengxinjuniem@163.com

  • 中图分类号: TU921

Seismic Performance and Damping Measures of Shear Keys for Immersed Tunnel Joints

  • 摘要:

    为提高沉管隧道接头的抗震安全性,设计了一种减震装置,完成了有无减震装置2组1/4大比例尺的接头剪力键模型往复加载拟静力对比试验. 通过试验揭示了沉管隧道接头剪力键模型在水平循环荷载下的力学行为及抗震性能,并验证了新型减震装置在沉管隧道接头减震中的可行性. 试验结果表明:无减震模型在循环剪切荷载下,凹槽端部率先出现裂缝,随后剪力键端部开始出现裂缝,随着加载位移的增大,剪力键出现较大塑性变形后失效;减震模型在循环剪切荷载下减震装置先出现局部屈曲,随后剪力键出现剪切破坏,减震装置可延迟剪力键的开裂时间;与无减震模型相比,减震模型在输入相同的加载位移时,其开裂荷载、屈服荷载、峰值荷载及破坏荷载分别提高了45.2%、37.33%、26.8%和29.2%;减震装置对模型初始刚度影响相对较小,且能满足规范限定的接头容许位移;单圈滞回耗能最大可提高55.1%,累积滞回耗能提高了31.9%,该减震装置可较好地提高剪力键的整体抗震性能.

     

  • 图 1  沉管隧道纵断面

    Figure 1.  Longitudinal profile of the immersed tunnel

    图 2  接头构造示意

    Figure 2.  Schematic of the immersion joint structure

    图 3  管节接头剪力键

    Figure 3.  Shear keys in immersion joint

    图 4  试验模型立面

    Figure 4.  Experimental model elevation

    图 5  减震装置

    Figure 5.  Damping device

    图 6  减震装置设计

    Figure 6.  Connection design of the damping device

    图 7  加载体系

    Figure 7.  Loading system

    图 8  传感器布置

    Figure 8.  Sensor arrangement

    图 9  应变片布置

    Figure 9.  Strain gauge arrangement

    图 10  试验加载工况

    Figure 10.  Loading cases during the tests

    图 11  试件P1裂缝发展情况

    Figure 11.  Cracking development of specimen P1

    图 12  试件P2裂缝发展情况

    Figure 12.  Cracking development of specimen P2

    图 13  试件钢筋应力

    Figure 13.  Steel stress distribution of specimens

    图 14  滞回曲线

    Figure 14.  Hysteretic loop

    图 15  骨架曲线

    Figure 15.  Skeleton curves

    图 16  各阶段模型承载力

    Figure 16.  Bearing capacity at different stages

    图 17  试件刚度衰减曲线

    Figure 17.  Stiffness attenuation curves

    图 18  耗能曲线

    Figure 18.  Energy dissipation curves

    表  1  橡胶垫材料参数

    Table  1.   Mechanical parameters of rubber pads

    名称数值
    邵氏硬度/HA55
    断裂强度/ MPa16
    延性/%> 450
    抗压强度/MPa10
    剪切模量/MPa1.06 ~ 1.11
    摩擦系数钢 0.2,混凝土 0.3
    下载: 导出CSV

    表  2  Q235板材力学参数

    Table  2.   Mechanical parameters of steel plate

    参数厚度/
    mm
    屈服强
    度/MPa
    抗拉强
    度/MPa
    屈强比断裂
    延伸率/%
    取值103104280.7335.6
    下载: 导出CSV
  • [1] 刘慧,程艺. “一带一路”建设对中国沿边地区发展影响的区域分异[J]. 区域经济评论,2018(6): 85-91.

    LIU Hui, CHENG Yi. Impacts of the “Belt and Road” initiative on the development of border areas in China[J]. Regional Economic Review, 2018(6): 85-91.
    [2] 禹海涛,袁勇,徐国平,等. 超长沉管隧道抗震设计及其关键性问题分析[J]. 上海交通大学学报,2012,46(1): 94-98.

    YU Haitao, YUAN Yong, XU Guoping, et al. Issues on the seismic design and analysis of ultra-long immersed tunnel[J]. Journal of Shanghai Jiao Tong University, 2012, 46(1): 94-98.
    [3] 严松宏,高峰,李德武,等. 南京长江沉管隧道的地震安全性评价[J]. 岩石力学与工程学报,2003,22(增2): 2800-2803.

    YAN Songhong, GAO Feng, LI Dewu, et al. Estimation on seismic safety of Nanjing Changjiang submerged tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2): 2800-2803.
    [4] ANASTASOPOULOS I, GEROLYMOS N, DROSOS V, et al. Nonlinear response of deep immersed tunnel to strong seismic shaking[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(9): 1067-1090. doi: 10.1061/(ASCE)1090-0241(2007)133:9(1067)
    [5] 陈贵红. 沉管隧道抗震数值分析[D]. 成都: 西南交通大学, 2002.
    [6] 禹海涛,萧文浩,赵旭,等. 沉管隧道柔性接头压缩性能研究[J]. 中国公路学报,2019,32(5): 115-122,180.

    YU Haitao, XIAO Wenhao, ZHAO Xu, et al. Compression performance of flexible joints in immersed tunnels[J]. China Journal of Highway and Transport, 2019, 32(5): 115-122,180.
    [7] 袁勇,申中原,禹海涛. 沉管隧道纵向地震响应分析的多体动力学方法[J]. 工程力学,2015,32(5): 76-83.

    YUAN Yong, SHEN Zhongyuan, YU Haitao. Multibody dynamics method for longitudinal seismic response analysis of immersed tunnels[J]. Engineering Mechanics, 2015, 32(5): 76-83.
    [8] 袁勇,禹海涛,燕晓,等. 超长沉管隧道多点振动台试验模拟与分析[J]. 中国公路学报,2016,29(12): 157-165. doi: 10.3969/j.issn.1001-7372.2016.12.020

    YUAN Yong, YU Haitao, YAN Xiao, et al. Multi-point shaking table test simulation and analysis of a super-long immersed tunnel[J]. China Journal of Highway and Transport, 2016, 29(12): 157-165. doi: 10.3969/j.issn.1001-7372.2016.12.020
    [9] 李伟华. 考虑水-饱和土场地-结构耦合时的沉管隧道地震反应分析[J]. 防灾减灾工程学报,2010,30(6): 607-613.

    LI Weihua. Seismic response analysis of immersed tube tunnel considering the dynamic interactions between water, stratum and structure influence of liquid parameters on the damage of buried pipeline[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(6): 607-613.
    [10] 郭毅之,金先龙,丁峻宏,等. 沉管隧道地震响应分析的并行计算[J]. 岩石力学与工程学报,2005,24(15): 2723-2727. doi: 10.3321/j.issn:1000-6915.2005.15.021

    GUO Yizhi, JIN Xianlong, DING Junhong, et al. Parallel processing of seismic response analysis for immersed tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2723-2727. doi: 10.3321/j.issn:1000-6915.2005.15.021
    [11] 丁峻宏,金先龙,郭毅之,等. 沉管隧道地震响应的三维非线性数值模拟方法及应用[J]. 振动与冲击,2005,24(5): 18-22. doi: 10.3969/j.issn.1000-3835.2005.05.006

    DING Junhong, JIN Xianlong, GUO Yizhi, et al. 3D numerical simulation method and its application in calculation of seismic response of immersed tunnel[J]. Journal of Vibration and Shock, 2005, 24(5): 18-22. doi: 10.3969/j.issn.1000-3835.2005.05.006
    [12] 董云,楼梦麟. 关于超长沉管隧道地震反应分析中瑞利阻尼矩阵的讨论[J]. 地震工程与工程振动,2014,34(1): 87-94.

    DONG Yun, LOU Menglin. Discussion on rayleigh damping matrix for seismic response analysis of long immersed tube tunnel[J]. Earthquke Engineering and Engineering Dynamics, 2014, 34(1): 87-94.
    [13] OKAMOTO S, TAMURA C. Behaviour of subaqueous tunnels during earthquakes[J]. Earthquake Engineering & Structural Dynamics, 1972, 1(3): 253-266.
    [14] CHEN H J, LI X J, YAN W M, et al. Shaking table test of immersed tunnel considering the geological condition[J]. Engineering Geology, 2017, 227: 93-107. doi: 10.1016/j.enggeo.2017.05.014
    [15] 陈红娟,闫维明,陈适才,等. 沉管隧道-接头-场地土振动台试验研究[J]. 岩土工程学报,2018,40(4): 634-644.

    CHEN Hongjuan, YAN Weiming, CHEN Shicai, et al. Shaking table tests on immersed tunnel-joint-soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 634-644.
    [16] 程新俊,景立平,崔杰,等. 不同场地沉管隧道振动台模型试验研究[J]. 西南交通大学学报,2017,52(6): 1113-1120. doi: 10.3969/j.issn.0258-2724.2017.06.011

    CHENG Xinjun, JING Liping, CUI Jie, et al. Research of shaking table model tests on immersed tunnels under different conditions[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1113-1120. doi: 10.3969/j.issn.0258-2724.2017.06.011
    [17] 禹海涛,袁勇,刘洪洲,等. 沉管隧道接头力学模型及刚度解析表达式[J]. 工程力学,2014,31(6): 145-150.

    YU Haitao, YUAN Yong, LIU Hongzhou, et al. Mechanical model and analytical solution for stiffness in the joints of an immersed-tube tunnel[J]. Engineering Mechanics, 2014, 31(6): 145-150.
    [18] 尚守平. 结构抗震设计[M]. 北京: 高等教育出版社, 2003.
    [19] PARK R. Evaluation of ductility of structures and structural assemblages from laboratory testing[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 1989, 22(3): 155-166. doi: 10.5459/bnzsee.22.3.155-166
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  389
  • HTML全文浏览量:  142
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-16
  • 修回日期:  2021-02-28
  • 网络出版日期:  2022-08-03
  • 刊出日期:  2021-03-08

目录

    /

    返回文章
    返回