• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

顾及小目标特征的视频人流量智能统计方法

朱军 张天奕 谢亚坤 张杰 李闯农 赵犁 李维炼

朱军, 张天奕, 谢亚坤, 张杰, 李闯农, 赵犁, 李维炼. 顾及小目标特征的视频人流量智能统计方法[J]. 西南交通大学学报, 2022, 57(4): 705-712, 736. doi: 10.3969/j.issn.0258-2724.20200425
引用本文: 朱军, 张天奕, 谢亚坤, 张杰, 李闯农, 赵犁, 李维炼. 顾及小目标特征的视频人流量智能统计方法[J]. 西南交通大学学报, 2022, 57(4): 705-712, 736. doi: 10.3969/j.issn.0258-2724.20200425
ZHU Jun, ZHANG Tianyi, XIE Yakun, ZHANG Jie, LI Chuangnong, ZHAO Li, LI Weilian. Intelligent Statistic Method for Video Pedestrian Flow Considering Small Object Features[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 705-712, 736. doi: 10.3969/j.issn.0258-2724.20200425
Citation: ZHU Jun, ZHANG Tianyi, XIE Yakun, ZHANG Jie, LI Chuangnong, ZHAO Li, LI Weilian. Intelligent Statistic Method for Video Pedestrian Flow Considering Small Object Features[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 705-712, 736. doi: 10.3969/j.issn.0258-2724.20200425

顾及小目标特征的视频人流量智能统计方法

doi: 10.3969/j.issn.0258-2724.20200425
基金项目: 国家自然科学基金(U2034202, 41871289);四川省科技计划(2020JDTD0003)
详细信息
    作者简介:

    朱军(1976—),男,教授,博士,研究方向为三维地理信息系统与计算机视觉,E-mail:zhujun@swjtu.edu.cn

  • 中图分类号: TP391.4

Intelligent Statistic Method for Video Pedestrian Flow Considering Small Object Features

  • 摘要:

    人流量统计对智能安防等领域具有重要研究价值. 针对视频监控系统中人流量统计准确率较低的问题,提出一种顾及小目标特征的视频人流量智能统计方法,重点研究用于小目标检测的Faster R-CNN (Faster region-convolutional neural network)改进算法、运动目标关联匹配以及双向人流量智能统计等关键技术,根据人头目标的小尺度特点对Faster R-CNN网络结构进行适应性改进,利用图像浅层特征提高网络对于小目标的特征提取能力,通过基于轨迹预测的跟踪算法实现运动目标的实时追踪,同时设计双向人流量智能统计算法,以实现人流量高准确率统计;为证明方法的有效性,在密集程度不同的场景中进行了测试. 测试结果表明:改进的目标检测算法相较于原始算法,在Brainwash测试集和Pets2009基准数据集上的平均准确率分别提高了7.31%、10.71%,视频人流量智能统计方法在多种场景下的综合评价指标F值均能达到90.00%以上,相较于SSD-Sort算法和Yolov3-DeepSort算法,其F值提高了1.14% ~ 3.04%.

     

  • 图 1  总体框架

    Figure 1.  Overall framework

    图 2  Faster R-CNN改进算法框架

    Figure 2.  Framework of improved Faster R-CNN algorithm

    图 3  多尺度下Anchor尺寸对比

    Figure 3.  Contrast of multi-scale anchor size

    图 4  目标跟踪算法流程

    Figure 4.  Flow chart of object tracking algorithm

    图 5  双向人流量智能统计算法流程

    Figure 5.  Flow chart of intelligent statistic algorithm of bidirectional pedestrian flow

    图 6  人流量智能统计过程

    Figure 6.  Intelligent statistic process of pedestrian flow

    图 7  目标检测实验测试集所包含场景

    Figure 7.  Scenes for test set in object detection experiments

    图 8  不同场景下视频人流量统计结果

    Figure 8.  Results of video pedestrian flow statistics in different scenes

    表  1  人流量统计实验视频信息

    Table  1.   Experimental video information of pedestrian flow statistics

    视频序列时长/s帧率/(帧 · s−1人数密集程度
    视频一2222565稀疏
    视频二35259稀疏
    视频三463063密集
    下载: 导出CSV

    表  2  不同目标检测算法结果对比

    Table  2.   Result comparison of different object detection algorithms

    算法平均准确率/%
    文献[18]78.00
    文献[21]74.20
    文献[22]70.00
    文献[23]41.83
    文献[14]72.27
    本文79.58
    下载: 导出CSV

    表  3  模型对比结果

    Table  3.   Result comparison of models

    算法平均准确率/%时间/s
    原始63.530.166
    对比67.190.184
    本文74.240.168
    下载: 导出CSV

    表  4  多尺度特征融合方法精度

    Table  4.   Mean average precision of multi-scale feature fusion methods

    Conv2_2Conv3_3Conv4_3Conv5_3平均准确率/%
    64.92
    68.43
     69.46
    下载: 导出CSV

    表  5  视频人流量统计结果

    Table  5.   Results of video pedestrian flow statistics %

    视频序列召回率精确率F
    视频一90.7793.6592.19
    视频二88.89100.0094.12
    视频三92.0693.5592.80
    下载: 导出CSV

    表  6  不同算法对比结果

    Table  6.   Comparison results of different algorithms for pedestrian flow statistics %

    算法召回率精确率F
    SSD-Sort87.5991.6089.55
    Yolov3-DeepSort89.7893.1891.45
    本文方法91.2493.9892.59
    下载: 导出CSV
  • [1] 鲁工圆,马驷,王坤,等. 城市轨道交通线路客流控制整数规划模型[J]. 西南交通大学学报,2017,52(2): 319-325. doi: 10.3969/j.issn.0258-2724.2017.02.015

    LU Gongyuan, MA Si, WANG Kun, et al. Integer programming model of passenger flow assignment for congested urban rail lines[J]. Journal of Southwest Jiaotong University, 2017, 52(2): 319-325. doi: 10.3969/j.issn.0258-2724.2017.02.015
    [2] 张君军,石志广,李吉成. 人数统计与人群密度估计技术研究现状与趋势[J]. 计算机工程与科学,2018,40(2): 282-291. doi: 10.3969/j.issn.1007-130X.2018.02.013

    ZHANG Junjun, SHI Zhiguang, LI Jicheng. Current researches and future perspectives of crowd counting and crowd density estimation technology[J]. Computer Engineering & Science, 2018, 40(2): 282-291. doi: 10.3969/j.issn.1007-130X.2018.02.013
    [3] XIE Y K, ZHU J, CAO Y G, et al. Efficient video fire detection exploiting motion-flicker-based dynamic features and deep static features[J]. IEEE Access, 2020, 8: 81904-81917. doi: 10.1109/ACCESS.2020.2991338
    [4] 蔡泽彬. 基于视频分析的行人检测及统计方法研究[D]. 广州: 华南理工大学, 2015.
    [5] 李航,张涛,李菲. 一种基于智能视频分析的人流量统计算法[J]. 信息工程大学学报,2018,19(3): 373-378. doi: 10.3969/j.issn.1671-0673.2018.03.023

    LI Hang, ZHANG Tao, LI Fei. Pedestrian volume counting algorithm based on intelligent video analysis[J]. Journal of Information Engineering University, 2018, 19(3): 373-378. doi: 10.3969/j.issn.1671-0673.2018.03.023
    [6] 徐超,高梦珠,查宇峰,等. 基于HOG和SVM的公交乘客人流量统计算法[J]. 仪器仪表学报,2015,36(2): 446-452.

    XU Chao, GAO Mengzhu, ZHA Yufeng, et al. Bus passenger flow calculation algorithm based on HOG and SVM[J]. Chinese Journal of Scientific Instrument, 2015, 36(2): 446-452.
    [7] 彭山珍,方志军,高永彬,等. 基于多尺度全卷积网络特征融合的人群计数[J]. 武汉大学学报(理学版),2018,64(3): 249-254.

    PENG Shanzhen, FANG Zhijun, GAO Yongbin, et al. Crowd counting based on feature fusion of multi-scale fully convolutional networks[J]. Journal of Wuhan University (Natural Science Edition), 2018, 64(3): 249-254.
    [8] CHAN A B, LIANG Z J, VASCONCELOS N. Privacy preserving crowd monitoring: Counting people without people models or tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE, 2008: 1-7.
    [9] ZHANG C, LI H, WANG X, et al. Cross-scene crowd counting via deep convolutional neural networks[C]// IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 833-841.
    [10] 秦方. 基于计算机视觉的行人检测与人数统计算法研究[D]. 成都: 电子科技大学, 2018.
    [11] HE M, LUO H, HUI B, et al. Pedestrian flow tracking and statistics of monocular camera based on convolutional neural network and Kalman filter[J]. Applied Science-Basels, 2019, 9(8): 1-13.
    [12] 曹诚,卿粼波,韩龙玫,等. 城市量化研究中视频人流统计分析[J]. 计算机系统应用,2018,27(4): 88-93.

    CAO Cheng, QING Linbo, HAN Longmei, et al. Human traffic analysis based on video for urban quantitative research[J]. Computer Systems & Applications, 2018, 27(4): 88-93.
    [13] 张天琦. 基于深度学习的行人流量统计算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
    [14] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [15] ZHANG L L, LIN L, LIANG X D, et al. Is faster R-CNN doing well for pedestrian detection?[M]// Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 443-457.
    [16] GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2414-2423.
    [17] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04)[2020-05-20]. https://arxiv.org/abs/1409.1556.
    [18] STEWART R, ANDRILUKA M, NG A Y. End-to-end people detection in crowded scenes[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2325-2333.
    [19] BEWLEY A, ALEX Z, OZZ L, et al. Simple online and realtime tracking[C]//IEEE International Con- ference on Image Processing. Phoenix: IEEE, 2016: 3464-3468.
    [20] FERRYMAN J, SHAHROKNI A. PETS2009: Dataset and challenge[C]//Twelfth IEEE International Work- shop on Performance Evaluation of Tracking and Surveillance. Snowbird: IEEE, 2009: 1-6.
    [21] 吕俊奇,邱卫根,张立臣,等. 多层卷积特征融合的行人检测[J]. 计算机工程与设计,2018,39(11): 3481-3485.

    LYU Junqi, QIU Weigen, ZHANG Lichen, et al. Multi-scale convolutional feature fusion for pedestrian detection[J]. Computer Engineering and Design, 2018, 39(11): 3481-3485.
    [22] VORA A, CHILAKA V. FCHD: A fast and accurate head detector[DB/OL]. (2018-09-24)[2020-05-22].https://arxiv.org/abs/1809.08766v1.
    [23] 高玮军,师阳,杨杰,等. 一种改进的轻量人头检测方法[J]. 计算机工程与应用,2021,57(1): 207-212.

    GAO Weijun, SHI Yang, YANG Jie, et al. An improved lightweight head detection method[J]. Computer Engineering and Applications, 2021, 57(1): 207-212.
    [24] BELL S, ZITNICK C L, BALA K, et al. Inside-Outside Net: Detecting objects in context with skip pooling and recurrent neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2874-2883.
    [25] KONG T, YAO A, CHEN Y, et al. HyperNet: Towards accurate region proposal generation and joint object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 845-853.
    [26] 李继秀,李啸天,刘子仪. 基于SSD卷积神经网络的公交车下车人数统计[J]. 计算机系统应用,2019,28(3): 51-58.

    LI Jixiu, LI Xiaotian, LIU Ziyi. Statistics on number of people getting off bus based on SSD convolutional neural network[J]. Computer Systems & Applications, 2019, 28(3): 51-58.
    [27] 杨亦乐,高玮玮,马晓峰,等. 基于深度学习的行人数量统计方法[J]. 软件,2019,40(11): 119-122,151. doi: 10.3969/j.issn.1003-6970.2019.11.026

    YANG Yile, GAO Weiwei, MA Xiaofeng, et al. Pedestrian statistics based on deep learning[J]. Computer Engineering & Software, 2019, 40(11): 119-122,151. doi: 10.3969/j.issn.1003-6970.2019.11.026
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  407
  • HTML全文浏览量:  134
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 修回日期:  2020-12-24
  • 刊出日期:  2021-05-14

目录

    /

    返回文章
    返回