• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

水下隧道开挖面三维渗流场解析及涌水量预测分析

张雨 张顶立 徐曈 熊磊晋

张雨, 张顶立, 徐曈, 熊磊晋. 水下隧道开挖面三维渗流场解析及涌水量预测分析[J]. 西南交通大学学报, 2021, 56(6): 1260-1267. doi: 10.3969/j.issn.0258-2724.20200397
引用本文: 张雨, 张顶立, 徐曈, 熊磊晋. 水下隧道开挖面三维渗流场解析及涌水量预测分析[J]. 西南交通大学学报, 2021, 56(6): 1260-1267. doi: 10.3969/j.issn.0258-2724.20200397
ZHANG Yu, ZHANG Dingli, XU Tong, XIONG Leijin. Analysis of Three-Dimensional Seepage Field and Prediction of Water Inflow in Excavation Face of Underwater Tunnels[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1260-1267. doi: 10.3969/j.issn.0258-2724.20200397
Citation: ZHANG Yu, ZHANG Dingli, XU Tong, XIONG Leijin. Analysis of Three-Dimensional Seepage Field and Prediction of Water Inflow in Excavation Face of Underwater Tunnels[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1260-1267. doi: 10.3969/j.issn.0258-2724.20200397

水下隧道开挖面三维渗流场解析及涌水量预测分析

doi: 10.3969/j.issn.0258-2724.20200397
基金项目: 国家自然科学基金(51738002);国家重点研发计划(2017YFC0805401)
详细信息
    作者简介:

    张雨(1991—),男,博士研究生,研究方向为海底隧道防排水工程,E-mail:16115279@bjtu.edu.cn

    通讯作者:

    张顶立(1963—),男,教授,博士,研究方向为隧道及地下工程,E-mail: zhang-dingli@263.net

  • 中图分类号: TU47

Analysis of Three-Dimensional Seepage Field and Prediction of Water Inflow in Excavation Face of Underwater Tunnels

  • 摘要:

    开挖面前方地层水压力及渗水量值是水下隧道工程重要参数,也是开挖面支护力设计、超前堵水加固参数设计的重要指标. 针对以往二维渗流模型分析水下隧道开挖面前方三维渗流场的局限性问题,首先,建立考虑开挖面前方渗流等势面为空间曲面的水下隧道三维渗流解析模型;其次,推导以开挖面所在平面为分界线的全部未开挖区半地层空间的水头分布函数,得出开挖面渗水量及前方地层孔隙水压力计算公式;最后,分析超前加固厚度、土体与超前加固渗透系数相对值等因素对开挖面前方水压力及渗水量的影响. 分析结果表明:与以往考虑开挖面正前方为二维渗流场的理论模型相较,三维解析模型能更好地反映开挖面前方空间渗流形态,且涌水量与水压力计算结果误差在5%以内;当掌子面前方加固范围为2倍洞室直径,超前加固区与地层相对渗透系数取值50,为安全合理的超前堵水加固参数.

     

  • 图 1  水下隧道三维模型

    Figure 1.  Three-dimensional model of underwater tunnel

    图 2  含水层保角映射

    Figure 2.  Conformal mapping in aquifer region

    图 3  三维渗流场模型

    Figure 3.  Three-dimensional seepage field model

    图 4  开挖面前方地层渗流模型

    Figure 4.  Seepage model of stratum in front of excavation face

    图 5  超前注浆示意

    Figure 5.  Schematic of advanced grouting

    图 6  超前注浆三维渗流模型

    Figure 6.  3D seepage model of advanced grouting

    图 7  开挖面前方5 m水压力解析解与数值解对比

    Figure 7.  Comparison of analytical and numerical solutions of water pressure at 5 m in front of excavation face

    图 8  开挖面前50 m AB线水压力解析与数值解对比

    Figure 8.  Comparison of analytical and numerical solutions of AB line water pressure within 50 m in front of excavation face

    图 9  前方1倍洞直径点C与注浆区位置

    Figure 9.  Locations of point C distanced one time of tunnel diameter and grouting area

    图 10  前方1倍洞直径点C处水压力与注浆厚度关系

    Figure 10.  Relationship between water pressure at point C distanced one time of tunnel diameter and grouting thickness

    图 11  前方2倍洞直径点D与注浆区位置

    Figure 11.  Locations of point D distanced two times of tunnel diameter and grouting area

    图 12  D水压力随相对渗透系数变化情况

    Figure 12.  Change of water pressure at point D with relative permeability coefficient

    图 13  开挖面涌水量随相对渗透系数变化情况

    Figure 13.  Change of water inflow at excavation face with relative permeability coefficient

    图 14  开挖面涌水量随超前注浆厚度变化情况

    Figure 14.  Change of water inflow at excavation face with advanced grouting thickness

    表  1  厦门翔安海底隧道注浆参数

    Table  1.   Grouting parameters of Xiang’an under ocean tunnel in Xiamen

    r1/mrg/mh/mhw/mkr/(m•s−1kg/(m•s−1
    7.413.452.420.05 × 10−65 × 10−8
    下载: 导出CSV
  • [1] EL TANI M. Circular tunnel in a semi-infinite aquifer[J]. Tunnelling and Underground Space Technology, 2003, 18(1): 49-55. doi: 10.1016/S0886-7798(02)00102-5
    [2] GOODMAN R E, MOYE D G, SCHALKWYK A V, et al. Ground water inflow during tunnel driving[J]. Engineering Geology, 1965, 2(1): 39-56.
    [3] LEE I M, NAM S W. The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels[J]. Tunnelling and Underground Space Technology, 2001, 16(1): 31-40. doi: 10.1016/S0886-7798(01)00028-1
    [4] 王建宇. 再谈隧道衬砌水压力[J]. 现代隧道技术,2003,40(3): 5-10. doi: 10.3969/j.issn.1009-6582.2003.03.002

    WANG Jianyu. Once more on hydraulic pressure upon lining[J]. Modern Tunnelling Technology, 2003, 40(3): 5-10. doi: 10.3969/j.issn.1009-6582.2003.03.002
    [5] 王秀英,王梦恕,张弥. 计算隧道排水量及衬砌外水压力的一种简化方法[J]. 北方交通大学学报,2004,28(1): 8-10.

    WANG Xiuying, WANG Mengshu, ZHANG Mi. A simple method to calculate tunnel discharge and external water pressure on lining[J]. Journal of Northern Jiaotong University, 2004, 28(1): 8-10.
    [6] 宋浩然. 钻爆法海底隧道突水机理及其应用[D]. 北京: 北京交通大学, 2015.
    [7] 应宏伟,朱成伟,龚晓南. 考虑注浆圈作用水下隧道渗流场解析解[J]. 浙江大学学报(工学版),2016,50(6): 1018-1023.

    YING Hongwei, ZHU Chengwei, GONG Xiaonan. Analytic solution on seepage field of underwater tunnel considering grouting circle[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(6): 1018-1023.
    [8] LI P F, WANG F, FANG Q. Undrained analysis of ground reaction curves for deep tunnels in saturated ground considering the effect of ground reinforcement[J]. Tunnelling and Underground Space Technology, 2018, 71: 579-590. doi: 10.1016/j.tust.2017.11.001
    [9] 刘维. 饱和成层土中盾构掘进面稳定理论性研究[D]. 杭州: 浙江大学, 2013.
    [10] 曹利强,张顶立,李新宇,等. 浅埋盾构穿越渗透性地层时极限支护压力分析[J]. 西南交通大学学报,2019,54(3): 507-515. doi: 10.3969/j.issn.0258-2724.20180482

    CAO Liqiang, ZHANG Dingli, LI Xinyu, et al. Analysis of limit support pressure due to shield tunnelling with shallow overburden under seepage[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 507-515. doi: 10.3969/j.issn.0258-2724.20180482
    [11] VERRUIJT A, BOOKER J R. Complex variable analysis of Mindlin’s tunnel problem[C]//Development in Theoretical Geomechanics. Sydney: [s.n.], 2000: 3-22.
    [12] LI P F, WANG F, LONG Y Y, et al. Investigation of steady water inflow into a subsea grouted tunnel[J]. Tunnelling and Underground Space Technology, 2018, 80: 92-102. doi: 10.1016/j.tust.2018.06.003
    [13] 沙金煊. 不完整井渗流的近似计算[J]. 岩土工程学报,1985,7(5): 36-48. doi: 10.3321/j.issn:1000-4548.1985.05.004

    SHA Jinxuan. The approximate calculation of partially pentratinf well[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(5): 36-48. doi: 10.3321/j.issn:1000-4548.1985.05.004
    [14] 吴一匡. 不完整井的非定常渗流计算[J]. 浙江水利科技,1987,15(2): 20-22.
    [15] 王旭东,殷宗泽,宰金珉,等. 柱坐标系下地下水非稳定流模拟的有限层法[J]. 岩土工程学报,2009,31(1): 15-20. doi: 10.3321/j.issn:1000-4548.2009.01.002

    WANG Xudong, YIN Zongze, ZAI Jinmin, et al. Finite layer method for numerical simulation of unsteady groundwater flow in cylindrical coordinate system[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 15-20. doi: 10.3321/j.issn:1000-4548.2009.01.002
    [16] BEAR J. Hydraulics of Groundwater[M]. New York: Mc Graw-Hill, 1979.
    [17] 张庆松,王德明,李术才,等. 断层破碎带隧道突水突泥模型试验系统研制与应用[J]. 岩土工程学报,2017,39(3): 417-426. doi: 10.11779/CJGE201703004

    ZHANG Qingsong, WANG Deming, LI Shucai, et al. Development and application of model test system for inrush of water and mud of tunnel in fault rupture zone[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 417-426. doi: 10.11779/CJGE201703004
    [18] ZHAO X, YANG X H. Experimental study on water inflow characteristics of tunnel in the fault fracture zone[J]. Arabian Journal of Geosciences, 2019, 12(13): 1-14.
    [19] 管泽英,杨朝帅. 超前预注浆技术在高压富水岩溶隧道中的优化应用[J]. 隧道建设(中英文),2018,38(增刊1): 136-141.

    GUAN Zeying, YANG Chaoshuai. Optimal application of advance pre-grouting technology to high-pressure water-rich Karst tunnel[J]. Tunnel Construction, 2018, 38(S1): 136-141.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  528
  • HTML全文浏览量:  234
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-24
  • 修回日期:  2020-11-25
  • 网络出版日期:  2020-12-25
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回