Processing math: 100%
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

降雨作用下基覆型边坡失稳特征及承载力试验研究

杨兵 周子鸿 陶龙 伏冠西 卓林波

谢明志, 杨永清, 卜一之, 赵灿晖, 张克跃, 王学伟. 千米级混合梁斜拉桥双目标控制施工监控体系[J]. 西南交通大学学报, 2018, 53(2): 244-252, 321. doi: 10.3969/j.issn.0258-2724.2018.02.004
引用本文: 杨兵, 周子鸿, 陶龙, 伏冠西, 卓林波. 降雨作用下基覆型边坡失稳特征及承载力试验研究[J]. 西南交通大学学报, 2022, 57(4): 910-918. doi: 10.3969/j.issn.0258-2724.20200355
XIE Mingzhi, YANG Yongqing, BU Yizhi, ZHAO Canhui, ZHANG Keyue, WANG Xuewei. Construction Control System for Thousand-Meter-Scale Hybrid Girder Cable-Stayed Bridge Based on Double Target Control[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 244-252, 321. doi: 10.3969/j.issn.0258-2724.2018.02.004
Citation: YANG Bing, ZHOU Zihong, TAO Long, FU Guanxi, ZHUO Linbo. Experimental Study on Instability Characteristic and Bearing Capacity of Slope with Bedrock under Rainfall[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 910-918. doi: 10.3969/j.issn.0258-2724.20200355

降雨作用下基覆型边坡失稳特征及承载力试验研究

doi: 10.3969/j.issn.0258-2724.20200355
基金项目: 国家自然科学基金(51178402); 中央高校基本科研业务费专项资金(2682017QY02);四川省科技计划项目资助(2021YFS0323, 2020YFG0123)
详细信息
    作者简介:

    杨兵(1976—),男,副教授,研究方向为边坡稳定性分析,E-mail:yangb@home.swjtu.edu.cn

  • 中图分类号: TU43

Experimental Study on Instability Characteristic and Bearing Capacity of Slope with Bedrock under Rainfall

  • 摘要:

    为了研究降雨诱导基覆型边坡失稳特性,采用室内模型试验方法对基覆型边坡在暴雨作用下的失稳过程及机制进行了系统研究. 通过探讨降雨前后边坡内土体含水率和孔隙水压力在时间、空间上的变化特性,揭示降雨诱导的边坡失稳机制. 同时通过坡顶加载方法研究了雨后边坡承载力变化规律. 研究结果表明:随着降雨的发展,在坡脚处首先出现土体液化流动现象,随后出现土体局部脱落;随着降雨的持续进行,土体脱落破坏的范围逐渐增大,进而导致上方土体临空面加大,土体破坏后随即被雨水饱和软化而向下滑动,后方土体进一步被侵蚀,最终造成了一定深度和宽度的边坡破坏现象;边坡内土体含水率升高与孔隙水压力的增大是导致边坡失稳破坏的主要因素;降雨停止后,边坡可以承受的极限荷载先增大后减小,最后趋于稳定,而基覆型边坡在顶部静荷载作用下破坏模式呈现出整体和局部滑移模式.

     

  • 图 1  基覆型堆积体边坡模型示意

    Figure 1.  Schematic diagram of slope model with bedrock

    图 2  试验装置

    Figure 2.  Testing apparatus

    图 3  砂土表观黏聚力和内摩擦角随饱和度变化曲线

    Figure 3.  Variation of sand cohesion and sand internal with saturation

    图 4  土的粒径级配曲线

    Figure 4.  Gradation cumulative of soil particle size

    图 5  测量仪器布置示意(单位:cm)

    Figure 5.  Schematic diagram of sensor arrangement (unit:cm)

    图 6  边坡破坏发展过程

    Figure 6.  Slope failure development process

    图 7  工况6对应的边坡破坏发展过程

    Figure 7.  Slope failure development process for condition 6

    图 8  孔隙水压力与体积含水率随时间变化曲线

    Figure 8.  Variations of pore water pressure and water content with time

    图 9  边坡内体积含水率不同时间的空间分布

    Figure 9.  Spatial distribution of moisture content in slope at different time

    图 10  边坡内孔隙水压力不同时刻的空间分布

    Figure 10.  Spatial distribution of pore water pressure in slope at different times

    图 11  整体破坏模式典型实验图

    Figure 11.  Typical experiment diagram of the overall failure mode

    图 12  局部破坏模式典型实验图

    Figure 12.  Typical experiment diagram ofthe local failure mode

    图 13  破坏图

    Figure 13.  Failure diagram

    图 14  边坡顶部极限载荷随雨停后时间的变化

    Figure 14.  Variation of ultimate load with time after rain stop

    表  1  各物理量的相似关系

    Table  1.   Similarity law of each physical quantity

    物理量相似常数物理量相似常数
    HCHcCc=CγCH
    γCγϕ1
    gCgν1
    β1IrCIr=C0.5HC0.5g
    α1kCk=C0.5HC0.5g
    zCHtCt=C0.5HC0.5g
    θ11qCq=CγCH
    θ21
    下载: 导出CSV

    表  2  不同质量含水率条件下的强度指标

    Table  2.   Strength index under different water moistures

    质量含水率/% 饱和度/% c/kPa ϕ/ (°)
    0 0 0 35.89
    6 25.75 2.71 32.59
    12 51.50 6.09 31.15
    18 77.25 6.15 30.98
    23 100.00 1.16 29.88
    下载: 导出CSV

    表  3  边坡降雨试验设计

    Table  3.   Design of slope rain test

    工况
    编号
    降雨持续
    时间/h
    降雨强度/
    (mm•h–1
    降雨
    等级
    雨停后加
    载时间/h
    14.521.96暴雨0
    24.521.96暴雨5
    34.521.96暴雨10
    44.521.96暴雨20
    54.521.96暴雨40
    64.521.96暴雨无加载
    下载: 导出CSV

    表  4  不同含水率下边坡安全系数理论值

    Table  4.   Safety factor of slope under different water moistures

    质量含水率/% 饱和度/% 安全系数
    0 0 < 0.10
    6 25.75 1.80
    12 51.50 3.70
    18 77.25 4.20
    23 100.00 0.85
    下载: 导出CSV
  • [1] 高华喜,殷坤龙. 降雨与滑坡灾害相关性分析及预警预报阀值之探讨[J]. 岩土力学,2007,28(5): 1055-1060. doi: 10.3969/j.issn.1000-7598.2007.05.039

    GAO Huaxi, YIN Kunlong. Discuss on the correlations between landslides and rainfall and threshold for landslide early-warning and prediction[J]. Rock and Soil Mechanics, 2007, 28(5): 1055-1060. doi: 10.3969/j.issn.1000-7598.2007.05.039
    [2] 李焯芬, 汪 敏. 港渝两地滑坡灾害的对比研究[J. 岩石力学与工程学报, 2000, 19(4): 493-497.

    LEE C F, WANG Min. Comparison of landslide hazards between Hong Kong and Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(4): 493-497.
    [3] 陈丽霞,殷坤龙,刘礼领,等. 江西省滑坡与降雨的关系研究[J]. 岩土力学,2008,29(4): 1114-1120. doi: 10.3969/j.issn.1000-7598.2008.04.049

    CHEN Lixia, YIN Kunlong, LIU Liling, et al. Analysis of relationship between landslide and rainfall in Jiangxi Province[J]. Rock and Soil Mechanics, 2008, 29(4): 1114-1120. doi: 10.3969/j.issn.1000-7598.2008.04.049
    [4] WANG G, SASSA K. Factors affecting rainfall-induced flowslides in laboratory flume tests[J]. Géotechnique, 2001, 51(7): 587-599. doi: 10.1680/geot.2001.51.7.587
    [5] WANG G H, SASSA K. Pore-pressure generation and movement of rainfall-induced landslides:effects of grain size and fine-particle content[J]. Engineering geology, 2003, 69(1/2): 109-125.
    [6] YANG B, ZHOU Z H, HOU J R, et al. Failure characteristics and mechanism of deposit slopes with bedrock for different soil moisture contents under seismic load[J]. Soil dynamics and Earthquake Engineering, 2022, 154: 107128.1-107128.10.
    [7] TOHARI A, NISHIGAKI M, KOMATSU M. Laboratory rainfall-induced slope failure with moisture content measurement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(5): 575-587. doi: 10.1061/(ASCE)1090-0241(2007)133:5(575)
    [8] 林鸿州,于玉贞,李广信,等. 降雨特性对土质边坡失稳的影响[J]. 岩石力学与工程学报,2009,28(1): 198-204. doi: 10.3321/j.issn:1000-6915.2009.01.026

    LIN H C, YU Yuzhen, LI Guangxin, et al. Influence of rainfall characteristics on soil slope failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 198-204. doi: 10.3321/j.issn:1000-6915.2009.01.026
    [9] MORIWAKI H, INOKUCHI T, HATTANJI T, et al. Failure processes in a full-scale landslide experiment using a rainfall simulator[J]. Landslides, 2004, 1(4): 277-288. doi: 10.1007/s10346-004-0034-0
    [10] 汤明高,许强,李九乾,等. 降雨诱发震后松散堆积滑坡的启动试验研究[J]. 水文地质工程地质,2016,43(4): 128-134,140.

    TANG Minggao, XU Qiang, LI Jiuqian, et al. An experimental study of the failure mechanism of shallow landslides after earthquake triggered by rainfall[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 128-134,140.
    [11] 陈洪凯,周晓涵,谭玲. 降雨特性对滑坡孔隙水压力影响的试验研究[J]. 重庆师范大学学报(自然科学版),2017,34(1): 2,49-54.

    CHEN Hongkai, ZHOU Xiaohan, TAN Ling. Experimental study on the influence for rainfall characteristics to pore water pressure in landslide[J]. Journal of Chongqing Normal University (Natural Science), 2017, 34(1): 2,49-54.
    [12] 凌华,殷宗泽. 非饱和土强度随含水量的变化[J]. 岩石力学与工程学报,2007,26(7): 1499-1503. doi: 10.3321/j.issn:1000-6915.2007.07.026

    LING Hua, YIN Zongze. Variation of unsaturated soil strength with water contents[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1499-1503. doi: 10.3321/j.issn:1000-6915.2007.07.026
    [13] 申春妮,方祥位,王和文,等. 吸力、含水率和干密度对重塑非饱和土抗剪强度影响研究[J]. 岩土力学,2009,30(5): 1347-1351. doi: 10.3969/j.issn.1000-7598.2009.05.028

    SHEN Chunni, FANG Xiangwei, WANG Hewen, et al. Research on effects of suction, water content and dry density on shear strength of remolded unsaturated soils[J]. Rock and Soil Mechanics, 2009, 30(5): 1347-1351. doi: 10.3969/j.issn.1000-7598.2009.05.028
    [14] 陈东霞,龚晓南,马 亢. 厦门地区非饱和残积土的强度随含水量变化规律[J]. 岩石力学与工程学报,2015,34(增刊1): 3484-3490.

    CHEN Dongxia, GONG Xiaonan, MA Kang. Variation of the shear strength of Xiamen unsaturated residual soils with water content[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3484-3490.
    [15] 蔡国庆,车睿杰,孔小昂,等. 非饱和砂土抗拉强度的试验研究[J]. 水利学报,2017,48(5): 623-630.

    CAI Guoqing, CHE Ruijie, KONG Xiaoang, et al. Experimental investigation on tensile strength of unsaturated fine sands[J]. Journal of Hydraulic Engineering, 2017, 48(5): 623-630.
    [16] TAYLOR D W. Stability of earth slopes[J]. Journal of the Boston Society of Civil Engineeing, 1937, 24: 197-246.
    [17] 徐筱,蔡国庆,李 舰,等. 低应力及拉应力条件下非饱和土强度及剪胀特性[J]. 岩石力学与工程学报,2018,37(8): 1933-1942.

    XU Xiao, CAI Guoqing, LI Jian, et al. The strength and dilatancy characteristics of unsaturated soil at low and tensile stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8): 1933-1942.
  • 期刊类型引用(15)

    1. 陆粤,王铭,陈嵘,李小珍,王平. 基于行车平稳性的大跨度铁路桥梁成桥线形评价方法研究. 铁道标准设计. 2024(06): 44-51 . 百度学术
    2. 张明金,周远洲,沈孔健,苑仁安,郑清刚. 常泰长江大桥主航道桥桥塔横向偏位及其控制方案研究. 桥梁建设. 2023(01): 1-8 . 百度学术
    3. 黄春阳. 基于监测数据的独塔斜拉桥施工过程受力性能分析. 安徽建筑. 2023(04): 137-138+185 . 百度学术
    4. 苑仁安,张明金,郑清刚,傅战工,喻济昇. 超大跨斜拉桥横桥向恒载非对称力学行为. 西南交通大学学报. 2023(03): 527-534 . 本站查看
    5. 黄学漾. 双塔双索面异形塔柱斜拉桥施工控制关键技术探讨. 福建交通科技. 2023(06): 51-57 . 百度学术
    6. 汪劲丰,杨松伟,亢阳阳,向华伟. 分阶段施工中钢箱梁制造参数的通用计算方法. 浙江大学学报(工学版). 2022(03): 550-557 . 百度学术
    7. 李江刚,石建华,张巨生. 鳊鱼洲长江大桥南汊航道桥施工控制关键技术. 桥梁建设. 2022(04): 8-15 . 百度学术
    8. 李鹏飞,王石磊,魏思聪,李毅,罗吉庆. 大型空间异形钢塔斜拉桥拉索张拉控制. 公路交通科技. 2022(10): 49-58 . 百度学术
    9. 周仁忠,黄灿,郑建新. 福厦高铁泉州湾跨海大桥主桥施工控制关键技术. 桥梁建设. 2022(06): 131-139 . 百度学术
    10. 黄继荣,马牛静,王荣辉,陈广韬. 叠合梁斜拉桥快速施工过程中主梁线形及索力调控精细化分析. 交通世界. 2022(36): 145-148 . 百度学术
    11. 张飞,黄福云,王燕. V型墩刚构桥悬浇施工中应变修正与应力监测. 山东建筑大学学报. 2020(03): 36-41 . 百度学术
    12. 廖贵星,严汝辉,胡辉跃,张燕飞,徐恭义. 武汉青山长江公路大桥中跨钢箱梁施工控制关键技术. 桥梁建设. 2020(S1): 126-132 . 百度学术
    13. 高玉峰,杨永清,蒲黔辉,李晓斌. 桥梁施工监测控制理论及工程应用2019年度研究进展. 土木与环境工程学报(中英文). 2020(05): 98-105 . 百度学术
    14. 董晓兵,余友江. 青海哇加滩黄河特大桥施工控制. 桥梁建设. 2019(04): 96-101 . 百度学术
    15. 梅秀道,卢亦焱. 基于索长的大跨径斜拉桥施工控制计算方法及应用. 桥梁建设. 2019(06): 42-47 . 百度学术

    其他类型引用(12)

  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  431
  • HTML全文浏览量:  154
  • PDF下载量:  33
  • 被引次数: 27
出版历程
  • 收稿日期:  2020-06-06
  • 修回日期:  2020-11-01
  • 刊出日期:  2020-11-24

目录

    /

    返回文章
    返回