• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于熵值法的砂卵石地层深基坑开挖安全可拓评价

王伟 刘丹娜 彭第

王伟, 刘丹娜, 彭第. 基于熵值法的砂卵石地层深基坑开挖安全可拓评价[J]. 西南交通大学学报, 2021, 56(4): 785-791, 838. doi: 10.3969/j.issn.0258-2724.20200333
引用本文: 王伟, 刘丹娜, 彭第. 基于熵值法的砂卵石地层深基坑开挖安全可拓评价[J]. 西南交通大学学报, 2021, 56(4): 785-791, 838. doi: 10.3969/j.issn.0258-2724.20200333
WANG Wei, LIU Danna, PENG Di. Extension Evaluation on Excavation Safety of Deep Foundation Pit in Sandy Cobble Stratum Based on Entropy Method[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 785-791, 838. doi: 10.3969/j.issn.0258-2724.20200333
Citation: WANG Wei, LIU Danna, PENG Di. Extension Evaluation on Excavation Safety of Deep Foundation Pit in Sandy Cobble Stratum Based on Entropy Method[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 785-791, 838. doi: 10.3969/j.issn.0258-2724.20200333

基于熵值法的砂卵石地层深基坑开挖安全可拓评价

doi: 10.3969/j.issn.0258-2724.20200333
基金项目: 吉林省教育厅“十三五”科研规划(JJKH20191243KJ)
详细信息
    作者简介:

    王伟(1982—),男,高级实验师,博士,研究方向为地铁深基坑结构力学性质与稳定性评价,E-mail:16695496@qq.com

  • 中图分类号: TU42

Extension Evaluation on Excavation Safety of Deep Foundation Pit in Sandy Cobble Stratum Based on Entropy Method

  • 摘要: 为客观评价富水砂卵石地层中深基坑开挖的安全稳定性,根据结构变形、受力、地下水以及周边环境等因素选取地面沉降、建筑物沉降、地下水位等8个评价指标进行开挖安全性评价,以成都某地铁车站深基坑工程为例,根据基坑开挖4个月内的实测数据,采用熵值法对所选评价指标进行赋权,基于物元理论与可拓集合的关联函数,建立深基坑开挖安全可拓评价模型,并将评价结果与模糊综合评判结果进行比较. 研究结果表明:熵值赋权计算中,混凝土支撑轴力、桩顶沉降和支护结构水平位移是本案例中最重要的三项指标,对安全评价影响最大;对地面沉降与管线沉降的可拓评价结果比模糊综合评判结果高一个等级,与实际监测数据的评判结果相符,有利于施工过程中对潜在风险的防控;基于熵值赋权的可拓评价模型能够对基坑开挖安全性进行单因素分析与综合分析,所构建的可拓评价模型可以在成都地区富水砂卵石地层基坑工程安全评价中推广使用.

     

  • 表  1  凤溪站深基坑监测数据

    Table  1.   Monitoring data of deep foundation pit at Fengxi station

    序号开挖深度/mc1/mmc2/mmc3/mc4/mmc5/mmc6/kNc7/mmc8/mm
    1 1 −2.69 −2.62 13.00 3.9 −1.03 29.84 −4.12 −0.62
    2 6 −4.02 −2.31 15.00 3.0 −0.81 48.06 −7.24 −6.98
    3 9 −6.65 −2.43 19.40 3.8 −1.79 152.90 −10.33 −7.62
    4 14 −8.27 −3.17 21.00 5.8 −2.88 181.39 −13.10 −10.34
    5 18 −6.81 −6.39 23.10 6.9 −3.68 646.69 −12.28 −12.10
    6 22 −8.31 −8.04 25.40 7.6 −4.73 200.69 −12.46 −12.58
    7 26 −10.51 −5.40 27.78 8.9 −5.75 212.55 −14.08 −12.94
    8 30 −13.15 −7.29 32.00 8.4 −5.70 222.25 −13.65 −14.50
    9 32 −12.37 −6.91 33.55 4.3 −6.24 264.09 −12.84 −14.61
    下载: 导出CSV

    表  2  熵值赋权计算结果

    Table  2.   Results of the entropy weighting method

    项目ejgjwj
    c10.958 8730.041 1270.100 230
    c20.953 5350.046 4650.113 240
    c30.980 9390.019 0610.046 453
    c40.970 9810.029 0190.070 722
    c50.923 0290.076 9710.187 586
    c60.879 1370.120 8630.294 555
    c70.978 3040.021 6960.052 875
    c80.944 8780.055 1220.134 338
    下载: 导出CSV

    表  3  凤溪站深基坑开挖安全性判别

    Table  3.   Excavating safety evaluation for deep foundation pit at Fengxi station

    监测项目安全性判别标准
    判别内容Ⅰ级Ⅱ级Ⅲ级
    结构变形${F_1} = \dfrac{ { {\text{实测变形值} } } }{ { {\text{基坑开挖深度} } } }$ F1 > 0.012
    F1 > 0.007
    0.004 ≤ F1 ≤ 0.012
    0.002 ≤ F1 ≤ 0.007
    F1 < 0.004
    F1 < 0.002
    支撑轴力${F_2} = \dfrac{ { {\text{容许轴力} } } }{ { {\text{实测轴力} } } }$F2 < 0.80.8 ≤ F2 ≤ 1.0F2 > 1.0
    基底隆起${F_3} = \dfrac{ { {\text{实测变形值} } } }{ { {\text{基坑开挖深度} } } }$F3 > 1.0 × 10−2
    F3 > 0.5 × 10−2
    F3 > 0.2 × 10−2
    0.4 × 10−2F3 ≤ 1.0 × 10−2
    0.2 × 10−2F3 ≤ 0.5 × 10−2
    0.4 × 10−3F3 ≤ 0.2 × 10−2
    F3 < 0.4 × 10−2
    F3 < 0.2 × 10−2
    F3 < 0.4 × 10−3
    沉降值${F_4} = \dfrac{ { {\text{实测沉降值} } } }{ { {\text{基坑开挖深度} } } }$F4 > 1.2 × 10−2
    F4 > 0.7 × 10−2
    F4 > 0.2 × 10−2
    0.4 × 10−2F4 ≤ 1.2 × 10−2
    0.2 × 10−2F4 ≤ 0.7 × 10−2
    0.4 × 10−3F4 ≤ 0.2 × 10−2
    F4 < 0.4 × 10−2
    F4 < 0.2 × 10−2
    F4 < 0.4 × 10−3
    地下水位${F_5} = \dfrac{ { {\text{降水设计值} } } }{ { {\text{实测水位} } } }$F5 < 0.80.8 ≤ F5 ≤ 1.2F5 > 1.2
    注:1. F1上行适用于基坑附近无建筑物或地下管线的情况,下行适用于基坑附近有建筑物或地下管线的情况;
    2. F3F4的上、中行与F1同,下行适用于对变形有特别严格要求的情况.
    下载: 导出CSV

    表  4  各监测指标关联函数值

    Table  4.   Correlation function values of monitoring indexes

    Ⅰ级Ⅱ级Ⅲ级
    K11 = −0.7945 K21 = 0.0137 K31 = −0.0259
    K12 = −0.8744 K22 = −0.3719 K32 = 0.7438
    K13 = −0.1740 K23 = 0.9329 K33 = −0.1555
    K14 = −0.9603 K24 = −0.8609 K34 = 0.2781
    K15 = −0.9025 K25 = −0.5125 K35 = 0.9750
    K16 = −0.3958 K26 = −0.3626 K36 = 0.6598
    K17 = −0.7800 K27 = 0.0500 K37 = −0.0833
    K18 = −0.9348 K28 = −0.7717 K38 = 0.4566
    下载: 导出CSV

    表  5  各特征指标安全等级

    Table  5.   Safety level of characteristic indexes

    评价方法c1c2c3c4c5c6c7c8
    基于熵值法的
    可拓评价
    Ⅱ级Ⅲ级Ⅱ级Ⅲ级Ⅲ级Ⅲ级Ⅱ级Ⅲ级
    模糊综合
    评判方法
    Ⅲ级Ⅲ级Ⅱ级Ⅲ级Ⅲ级Ⅲ级Ⅲ级Ⅲ级
    下载: 导出CSV

    表  6  监测指标预警值与监测值

    Table  6.   Warning values and monitoring values of monitoring indexes

    项目预警要求最大监测值
    预警值/
    mm
    变化速率/
    (mm•d−1
    监测值/
    mm
    变化速率/
    (mm•d−1
    c122.40≥ 3.0013.152.55
    c216.00≥ 3.008.041.67
    c31600≥ 50018501052
    c422.40≥ 3.008.901.60
    c522.40≥ 3.006.241.35
    c720.00≥ 4.0014.082.43
    c822.40≥ 3.0014.611.39
    注:变化速率通常取工况前3 d内的最大值.
    下载: 导出CSV
  • CHOI H H, CHO H N, SEO J W. Risk assessment methodology for underground construction projects[J]. Journal of Construction Engineering and Management, 2004, 130(2): 258-272. doi: 10.1061/(ASCE)0733-9364(2004)130:2(258)
    KEPAPTSOGLOU K, KARLAFTIS M G, GKOUNTIS J. A fuzzy AHP model for assessing the condition of metro stations[J]. KSCE Journal of Civil Engineering, 2013, 17(5): 1109-1116. doi: 10.1007/s12205-013-0411-0
    邓祥辉,徐甜,龚珍,等. 基于模糊层次分析法的地铁深基坑施工风险评估[J]. 数学的实践与认识,2017,47(13): 136-142.

    DENG Xianghui, XU Tian, GONG Zhen, et al. Risk assessment of metro deep excavation pit in construction based on fuzzy analytical hierarchical process[J]. Mathematics in Practice and Theory, 2017, 47(13): 136-142.
    郭健,钱劲斗,陈健,等. 地铁车站深基坑施工风险识别与评价[J]. 土木工程与管理学报,2017,34(5): 32-38. doi: 10.3969/j.issn.2095-0985.2017.05.006

    GUO Jian, QIAN Jingdou, CHEN Jian, et al. Risk identification and evaluation for foundation pit construction of subway station[J]. Journal of Civil Engineering and Management, 2017, 34(5): 32-38. doi: 10.3969/j.issn.2095-0985.2017.05.006
    叶派平,李春芳. 基于模糊理论的地铁车站深基坑工程风险评价[J]. 公路,2018,63(5): 232-236.
    李明, 吴波, 李春芳. 深基坑工程周边建筑物安全模糊综合评价[J]. 隧道建设(中英文), 2018, 38(增刊1): 58-66.

    LI Ming, WU Bo, LI Chunfang. Fuzzy comprehensive evaluation for safety of surrounding buildings of deep foundation pit[J]. Tunnel Construction, 2008, 38(S1): 58-66.
    周勇,郑晓静,朱彦鹏,等. 基于FZZY-AHP评估模型的地铁车站施工风险分析[J]. 兰州理工大学学报,2008,44(4): 109-115. doi: 10.3969/j.issn.1673-5196.2008.04.027

    ZHOU Yong, ZHENG Xiaojing, ZHU Yanpeng, et al. Risk analysis of subway station construction based on FZZY-AHP assessment model[J]. Journal of Lanzhou University of Technology, 2008, 44(4): 109-115. doi: 10.3969/j.issn.1673-5196.2008.04.027
    黄磊. 模糊数学评价方法在深基坑安全评价中的应用[J]. 人民珠江,2019,40(3): 153-159. doi: 10.3969/j.issn.1001-9235.2019.03.026

    HUANG Lei. Application of fuzzy mathematics evaluation method in safety evaluation of deep foundation pit[J]. People's Pearl River, 2019, 40(3): 153-159. doi: 10.3969/j.issn.1001-9235.2019.03.026
    申建红,盖立庭,万索妮,等. 基于模糊集与改进证据理论的深基坑施工风险评价[J]. 土木工程与管理学报,2019,36(2): 28-34,41. doi: 10.3969/j.issn.2095-0985.2019.02.005

    SHEN Jianhong, GAI Liting, WAN Suoni, et al. Risk assessment of excavation construction based on fuzzy set and improved evidence theory[J]. Journal of Civil Engineering and Management, 2019, 36(2): 28-34,41. doi: 10.3969/j.issn.2095-0985.2019.02.005
    王成汤,王浩,覃卫民,等. 基于多态模糊贝叶斯网络的地铁车站深基坑坍塌可能性评价[J]. 岩土力学,2020,41(5): 1670-1679,1689.

    WANG Chengtang, WANG Hao, QIN Weimin, et al. Evaluation of collapse possibility of deep foundation pits in metro stations based on multi-state fuzzy Bayesian networks[J]. Rock and Soil Mechanics, 2020, 41(5): 1670-1679,1689.
    程敏,王倩露,林慧龙,等. 基于改进FMEA法的深基坑施工风险评价[J]. 土木工程与管理学报,2008,35(1): 54-59,72.

    CHENG Min, WANG Qianlu, LIN Huilong, et al. Risk assessment of deep foundation pit construction based on improved FMEA method[J]. Journal of Civil Engineering and Management, 2008, 35(1): 54-59,72.
    李立云,刘政,王兆辉. 基于灰色关联模型的改进型层次分析法与基坑风险评价[J]. 北京工业大学学报,2008,44(6): 889-896.

    LI Liyun, LIU Zheng, WANG Zhaohui. Improved analytic hierarchy process based on grey correlation model and its application in pit risk engineering[J]. Journal of Beijing University of Technology, 2008, 44(6): 889-896.
    李立云,梁湟琴,贾雷. 基于灰色关联模型改进型层次分析法的基坑降水风险评价[J]. 防灾科技学院学报,2019,21(1): 23-29.

    LI Liyun, LIANG Huanqin, JIA Lei. Risk analysis on pit dewatering by improved analytic hierarchy process based on gray correlationmodel[J]. Journal of Institute of Disaster and Prevention, 2019, 21(1): 23-29.
    陈楠. 基于IOWA算子的地铁车站深基坑施工安全综合评价[J]. 隧道建设(中英文),2020,40(2): 202-208.

    CHEN Nan. Comprehensive evaluation of construction safety of deep foundation pit of metrostation based on IOWA operator[J]. Tunnel Construction, 2020, 40(2): 202-208.
    魏丹. 基于故障树和层次分析法的地铁施工风险评价——以隧道竖井基坑围护结构失稳为例[J]. 安全与环境工程,2008,25(1): 100-104. doi: 10.3969/j.issn.1671-1556.2008.01.027

    WEI Dan. Risk assessment of subway construction based on fault tree analysis and analytical hierarchy process:a case study of destabilization of pit supporting structure of tunnel shaft[J]. Safety and Environmental Engineering, 2008, 25(1): 100-104. doi: 10.3969/j.issn.1671-1556.2008.01.027
    唐建新,李欣怡. 基于模糊数学的地铁深基坑稳定性评价[J]. 安全与环境学报,2008,18(6): 2135-2140.

    TANG Jianxin, LI Xinyi. On the stability evaluation of the deep foundation pit based on the fuzzy mathematics theory[J]. Journal of Safety and Environment, 2008, 18(6): 2135-2140.
    侯文丽,徐港. 基于AHP的地下工程基坑开挖风险评价——以杭州艮山东路地下管廊工程为例[J]. 智能城市,2019,5(3): 11-13.
    宋博. DEA-BP神经网络下地铁车站深基坑施工安全评价[J]. 中国安全科学学报,2019,29(5): 91-96.

    SONG Bo. Safety evaluation for deep foundation pit construction in metro station based on DEA-BP neural network[J]. Chinese Journal of Safety Science, 2019, 29(5): 91-96.
    王景春,张法. 基于熵权二维云模型的深基坑施工风险评价[J]. 安全与环境学报,2008,18(3): 849-853.

    WANG Jingchun, ZHANG Fa. Risk assessment of the deep foundation pit based on the entropy weight and 2-dimensional cloud model[J]. Journal of Safety and Environment, 2008, 18(3): 849-853.
    吴丹红,张美霞,张汉斌,等. 基于可拓学的地铁车站深基坑施工安全评价[J]. 安全与环境学报,2019,19(3): 761-766.

    WU Danhong, ZHANG Meixia, ZHANG Hanbin, et al. On the safety evaluation for deep foundation pit of the subway stations based on extenics[J]. Journal of Safety and Environment, 2019, 19(3): 761-766.
    叶义成, 柯丽华, 黄德育. 系统综合评价技术及其应用[M]. 北京: 冶金工业出版社, 2006.
    魏新江, 邓志秋, 魏纲, 等. 可拓评价方法和熵值法相结合的基坑安全评价[J]. 岩土工程学报, 2008, 30(增刊1): 672-676.

    WEI Xinjiang, DENG Zhiqiu, WEI Gang, et al. Safety evaluation of foundation pits by extension assessment method combined with entropy law[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S1): 672-676.
    沈世伟,许君臣,代树林,等. 基于熵值赋权法的节理岩体隧道爆破质量可拓学评价[J]. 土木工程学报,2013,46(12): 118-126.

    SHEN Shiwei, XU Junchen, DAI Shulin, et al. Extenics evaluation of joint rock tunnel blasting quality based on entropy weighting method[J]. China Civil Engineering Journal, 2013, 46(12): 118-126.
    刘招伟, 赵运臣. 城市地下工程施工监测与信息反馈技术[M]. 北京: 科学出版社, 2006.
  • 加载中
表(6)
计量
  • 文章访问数:  560
  • HTML全文浏览量:  297
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-02
  • 修回日期:  2020-07-18
  • 网络出版日期:  2020-08-24
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回