• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于二维耦合映像格子模型的图像加密

王永 江功坤 尹恩民

王永, 江功坤, 尹恩民. 基于二维耦合映像格子模型的图像加密[J]. 西南交通大学学报, 2021, 56(6): 1337-1345, 1354. doi: 10.3969/j.issn.0258-2724.20200331
引用本文: 王永, 江功坤, 尹恩民. 基于二维耦合映像格子模型的图像加密[J]. 西南交通大学学报, 2021, 56(6): 1337-1345, 1354. doi: 10.3969/j.issn.0258-2724.20200331
WANG Yong, JIANG Gongkun, YIN Enmin. Image Encryption Based on 2D Coupled Map Lattices[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1337-1345, 1354. doi: 10.3969/j.issn.0258-2724.20200331
Citation: WANG Yong, JIANG Gongkun, YIN Enmin. Image Encryption Based on 2D Coupled Map Lattices[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1337-1345, 1354. doi: 10.3969/j.issn.0258-2724.20200331

基于二维耦合映像格子模型的图像加密

doi: 10.3969/j.issn.0258-2724.20200331
基金项目: 国家自然科学基金(61472464);贵州省科学技术基金计划(黔科合基础[2020]1Y422)
详细信息
    作者简介:

    王永(1977—),男,教授,博士,研究方向为信息安全,混沌密码学,E-mail:wangyong_cqupt@163.com

  • 中图分类号: TP309.7

Image Encryption Based on 2D Coupled Map Lattices

  • 摘要:

    为了平衡混沌系统的复杂性和效率之间的关系,将分段Logistic映射(piecewise Logistic map,PLM)引入到二维耦合映像格子(2D coupled map lattices,2DCML)模型中. 采用暂态转换以使模型的输出序列服从均匀分布,进而得到T2DCML模型,基于此模型提出了一类图像加密算法. 在加密算法中,利用模型输出的伪随机序列构造两个初等变换矩阵,对图像进行置乱操作;然后再从模型中提取状态值的比特构造整数序列,对置乱后的图像进行扩散操作;经过若干轮的置乱与扩散操作,产生最后的加密图像. 仿真实验及性能分析表明:该算法的相关系数的绝对平均值为0.001 3,信息熵为7.999 3,像素变化率(number of pixel change rate,NPCR)和统一平均变化强度(unified average change intensity,UACI)分别为99.63%和33.60%,能够有效满足图像在网络中安全传输的需求.

     

  • 图 1  局部混沌函数PLM的LE

    Figure 1.  LE of local chaotic function PLM

    图 2  2DCML模型中格子(4,4)的分叉图

    Figure 2.  Bifurcation diagram of lattice (4,4) in 2DCML

    图 3  2DCML模型中格子(4,4)的遍历图

    Figure 3.  Ergodic diagram of lattice (4,4) in 2DCML

    图 4  2DCML的概率密度分布

    Figure 4.  Probability density distribution of 2DCML

    图 5  T2DCML模型中格子(4,4)的分叉图

    Figure 5.  Bifurcation diagram of lattice (4,4) in T2DCML

    图 6  T2DCML的概率密度分布

    Figure 6.  Probability density distribution of T2DCML

    图 7  明文图像和密文图像

    Figure 7.  Plaintext images and ciphertext images

    图 8  图像加密前、后的直方图

    Figure 8.  Histograms before and after image encryption

    图 9  加密时间与加密像素点数量的关系

    Figure 9.  Relation between encryption time and number of pixels

    表  1  NIST套件的测试结果

    Table  1.   Test results of NIST suites

    测试指标P通过率结果
    Frequency0.719 7470.993通过
    BlockFrequency0.996 3350.988通过
    CumulativeSums*0.817 1620.995通过
    Runs0.765 6320.988通过
    LongestRun0.071 6200.987通过
    Rank0.179 5840.990通过
    FFT0.492 4360.992通过
    NonOverlappingTemplate*0.496 1640.990通过
    OverlappingTemplate0.209 9480.983通过
    Universal0.755 8190.989通过
    ApproximateEntropy0.075 7190.986通过
    RandomExcursions*0.627 8870.989通过
    RandomExcursionsVariant*0.540 4020.992通过
    Serial*0.676 5980.986通过
    LinearComplexity0.096 0000.997通过
    下载: 导出CSV

    表  2  加密前后相邻像素间的相关系数

    Table  2.   Correlation coefficients between adjacent pixels

    图像水平方向垂直方向对角方向
    Lena 明文0.975 10.983 10.958 2
    Lena 密文0.001 20.000 60.001 6
    Baboon 明文0.888 00.746 80.716 0
    Baboon 密文0.001 10.000 40.003 3
    Pepper 明文0.977 40.975 80.962 7
    Pepper 密文0.000 80.002 60.001 2
    White 明文1.000 01.000 01.000 0
    White 密文−0.001 4−0.000 10.002 9
    Black 明文1.000 01.000 01.000 0
    Black 密文0.003 0−0.000 5−0.002 2
    下载: 导出CSV

    表  3  加密前后图像的信息熵

    Table  3.   Information entropies of images

    图像明文信息熵密文信息熵
    Lena7.445 57.999 3
    Baboon7.222 27.999 2
    Pepper7.364 47.999 3
    White07.999 3
    Black07.999 2
    下载: 导出CSV

    表  4  密文图像的差异

    Table  4.   Differences between ciphertext images %

    图像测试 1测试 2测试 3测试 4
    Lena99.59299.61499.59899.602
    Baboon99.61999.59999.59299.598
    Pepper99.62199.62299.61599.619
    White99.62399.61899.61399.617
    Black99.60799.61199.61799.579
    下载: 导出CSV

    表  5  密文图像的NPCR和UACI

    Table  5.   NPCR and UACI of ciphertext images %

    图像NPCRUACI
    Lena99.5933.44
    Baboon99.6433.50
    Pepper99.6033.50
    White99.5933.53
    Black99.6033.49
    下载: 导出CSV

    表  6  算法性能对比

    Table  6.   Comparison of algorithm performance

    加密算法相关系数信息熵NPCR/%UACI/%
    水平垂直对角绝对平均值
    本文算法 −0.002 5 −0.000 2 0.001 1 0.001 3 7.999 3 99.63 33.60
    文献[4] −0.022 3 −0.008 4 −0.008 6 0.013 1 7.997 4 99.61 33.46
    文献[5] −0.038 1 −0.029 1 0.002 7 0.023 3 7.999 2 99.61 33.45
    文献[6] 0.069 3 0.061 0 −0.024 2 0.051 5 7.999 1 99.57 33.41
    文献[7] 0.001 4 0.003 8 0.001 1 0.002 1 7.999 3 99.59
    文献[8] −0.023 0 0.001 9 −0.003 4 0.009 4 7.969 6 99.62 33.51
    文献[9] −0.014 4 −0.003 4 0.010 7 0.009 5 7.997 0 99.60 32.91
    文献[10] 0.016 3 −0.002 9 0.030 9 0.016 7 7.999 3 99.60 33.45
    下载: 导出CSV
  • [1] GARCIA-BOSQUE M, DÍEZ-SEÑORANS G, PÉREZ-RESA A, et al. A 1 gbps chaos-based stream cipher implemented in 0.18 μm CMOS technology[J]. Electronics, 2019, 8(6): 623. doi: 10.3390/electronics8060623
    [2] TEH J S, TAN K J, ALAWIDA M. A chaos-based keyed hash function based on fixed point representation[J]. Cluster Computing, 2019, 22(2): 649-660. doi: 10.1007/s10586-018-2870-z
    [3] ÖZKAYNAK F. Construction of robust substitution boxes based on chaotic systems[J]. Neural Computing and Applications, 2019, 31(8): 3317-3326. doi: 10.1007/s00521-017-3287-y
    [4] ZHANG Y. The fast image encryption algorithm based on lifting scheme and chaos[J]. Information Sciences, 2020, 520: 177-194. doi: 10.1016/j.ins.2020.02.012
    [5] ZHOU Minjun, WANG Chunhua. A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks[J]. Signal Processing, 2020, 171: 107484.1-107484.14.
    [6] FARAH M A B, GUESMI R, KACHOURI A, et al. A novel chaos based optical image encryption using fractional Fourier transform and DNA sequence operation[J]. Optics & Laser Technology, 2020, 121: 105777.1-105777.9.
    [7] 张健,霍达. 基于混沌系统和DNA编码的量子图像加密算法[J]. 西南交通大学学报,2018,53(6): 1142-1149. doi: 10.3969/j.issn.0258-2724.2018.06.008

    ZHANG Jian, HUO Da. Quantum image encryption algorithm based on chaotic system and DNA coding[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1142-1149. doi: 10.3969/j.issn.0258-2724.2018.06.008
    [8] XU Lu, ZHI Li, JIAN Li, et al. A novel bit-level image encryption algorithm based on chaotic maps[J]. Optics and Lasers in Engineering, 2016, 78: 17-25. doi: 10.1016/j.optlaseng.2015.09.007
    [9] YE Guodong. A block image encryption algorithm based on wave transmission and chaotic systems[J]. Nonlinear Dynamics, 2014, 75(3): 417-427. doi: 10.1007/s11071-013-1074-6
    [10] HUANG Xiaoling, YE Guodong. An image encryption algorithm based on hyper-chaos and DNA sequence[J]. Multimedia Tools and Applications, 2014, 72(1): 57-70. doi: 10.1007/s11042-012-1331-6
    [11] NEPOMUCENO E G, NARDO L G, ARIAS-GARCIA J, et al. Image encryption based on the pseudo-orbits from 1D chaotic map[J]. Chaos:an Interdisciplinary Journal of Nonlinear Science, 2019, 29(6): 061101.1-061101.8. doi: 10.1063/1.5099261
    [12] ALAWIDA M, TEH J S, SAMSUDIN A, et al. An image encryption scheme based on hybridizing digital chaos and finite state machine[J]. Signal Processing, 2019, 164: 249-266. doi: 10.1016/j.sigpro.2019.06.013
    [13] GOPALAKRISHNAN T, RAMAKRISHNAN S. Image encryption using hyper-chaotic map for permutation and diffusion by multiple hyper-chaotic maps[J]. Wireless Personal Communications, 2019, 109(1): 437-454. doi: 10.1007/s11277-019-06573-x
    [14] 张健,霍达. 基于混沌系统的量子彩色图像加密算法[J]. 西南交通大学学报,2019,54(2): 421-427.

    ZHANG Jian, HUO Da. Quantum colour image encryption algorithm based on chaotic systems[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 421-427.
    [15] WANG Xingyuan, ZHAO Hongyu, HOU Yutao, et al. Chaotic image encryption algorithm based on pseudo-random bit sequence and DNA plane[J]. Modern Physics Letters B, 2019, 33(22): 1950263.1-1950263.24. doi: 10.1142/S0217984919502634
    [16] GAYATHRI J, SUBASHINI S. A spatiotemporal chaotic image encryption scheme based on self adaptive model and dynamic keystream fetching technique[J]. Multimedia Tools and Applications, 2018, 77(19): 24751-24787. doi: 10.1007/s11042-018-5675-4
    [17] WEN Heping, YU Simin, LÜ Jinhu. Breaking an image encryption algorithm based on DAN encoding and spatiotemporal chaos[J]. Entropy, 2019, 21(3): 246. doi: 10.3390/e21030246
    [18] WANG Yong, LIU Zhaolong, MA Jianbin, et al. A pseudorandom number generator based on piecewise logistic map[J]. Nonlinear Dynamics, 2016, 83(4): 2373-2391. doi: 10.1007/s11071-015-2488-0
    [19] 王永,赵毅,GAO J,等. 基于分段Logistic映射的二维耦合映像格子模型的密码学相关特性分析[J]. 电子学报,2019,47(3): 657-663.

    WANG Yong, ZHAO Yi, GAO J, et al. Cryptographic feature analysis on 2D coupled map lattices based on piecewise logistic map[J]. Acta Electronica Sinica, 2019, 47(3): 657-663.
    [20] 李佩玥,石俊霞,郭嘉亮,等. 一种混沌伪随机序列均匀化普适算法的改进[J]. 电子学报,2015,43(4): 753-759. doi: 10.3969/j.issn.0372-2112.2015.04.018

    LI Peiyue, SHI Junxia, GUO Jialiang, et al. Improvement of a universal algorithm for uniformization of chaotic pseudo-random sequences[J]. Acta Electronica Sinica, 2015, 43(4): 753-759. doi: 10.3969/j.issn.0372-2112.2015.04.018
    [21] WANG Xiaomin, ZHANG Jiashu. An image scrambling encryption using chaos-controlled Poker shuffle operation[C]//2008 International Symposium on Biometrics and Security Technologies. Isalambad: IEEE, 2008: 1-6.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  182
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-27
  • 修回日期:  2020-10-16
  • 网络出版日期:  2021-09-26
  • 刊出日期:  2020-11-05

目录

    /

    返回文章
    返回