• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

加筋土挡墙地震稳定性破裂面随机搜索法

李倩 凌天清 韩林峰 张瑞刚

李倩, 凌天清, 韩林峰, 张瑞刚. 加筋土挡墙地震稳定性破裂面随机搜索法[J]. 西南交通大学学报, 2021, 56(4): 801-808. doi: 10.3969/j.issn.0258-2724.20200320
引用本文: 李倩, 凌天清, 韩林峰, 张瑞刚. 加筋土挡墙地震稳定性破裂面随机搜索法[J]. 西南交通大学学报, 2021, 56(4): 801-808. doi: 10.3969/j.issn.0258-2724.20200320
LI Qian, LING Tianqing, HAN Linfeng, ZHANG Ruigang. Random Search Method of Fracture Surface for Seismic Stability of Reinforced Retaining Wall[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 801-808. doi: 10.3969/j.issn.0258-2724.20200320
Citation: LI Qian, LING Tianqing, HAN Linfeng, ZHANG Ruigang. Random Search Method of Fracture Surface for Seismic Stability of Reinforced Retaining Wall[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 801-808. doi: 10.3969/j.issn.0258-2724.20200320

加筋土挡墙地震稳定性破裂面随机搜索法

doi: 10.3969/j.issn.0258-2724.20200320
基金项目: 国家自然科学基金(51479015)
详细信息
    作者简介:

    李倩(1987—),男,博士研究生,研究方向为道路防灾减灾,E-mail:liqianlove123@163.com

  • 中图分类号: TU443

Random Search Method of Fracture Surface for Seismic Stability of Reinforced Retaining Wall

  • 摘要: 为确定加筋土挡墙破裂面的位置,基于水平条分法提出了一种多线段破裂面表现形式. 将加筋土挡墙破裂面视为由多条线段组成,各条线段在一个平面内以不同的长度和角度相互连接;根据地震作用下水平土条的力学平衡条件,推导出与破裂面参数相关的筋材拉力计算式;将筋材总拉力作为目标函数,采用两层循环方式进行求解计算,外层为墙后填土水平表面破裂点位置循环,内层为随机角度循环;对比每次外层循环计算所得筋材总拉力,取最大值所对应的破裂面为所求加筋土挡墙临界破裂面. 通过算例对比验证了多线段破裂面计算方法的合理性,并对加筋土挡墙稳定性影响因素进行分析. 研究结果表明:以角度随机方式产生多线段破裂面的计算方法无需进行数学优化可得到合理结果,加筋土挡墙破裂面位置比对数螺旋破裂面更接近临空面;填土内摩擦角的增大使得筋材总拉力与筋材长度减小,能够增强加筋土挡墙的内部稳定性.

     

  • 图 1  水平条分法计算模型

    Figure 1.  Calculation model of horizontal slice method

    图 2  多线段破裂面形式

    Figure 2.  Form of polyline fracture surface

    图 3  多线段破裂面生成方法

    Figure 3.  Generation method of polylinefracture surface

    图 4  破裂面搜索计算流程

    Figure 4.  Flow chart of fracture surface search calculation

    图 5  ${{{L_{\rm{c}}}} / H}$$\varphi $ 关系的比较

    Figure 5.  Comparison of relationship between ${{{L_{\rm{c}}}} / H}$ and $\varphi $

    图 6  对数螺旋破裂面形式

    Figure 6.  Form of logarithmic spiral fracture surface

    图 7  多线段破裂面与对数螺旋破裂面位置的比较

    Figure 7.  Position comparison of polyline fracture surfaces and logarithmic spiral fracture surfaces

    图 8  $\alpha $不同时K$\varphi $的变化规律

    Figure 8.  Trend of K changing with $\varphi $ under different $\alpha $

    图 9  $\alpha $不同时${{{L_{\rm{c}}}} / H}$$\varphi $ 的变化规律

    Figure 9.  Trend of ${{{L_c}} / H}$ changing with $\varphi $ under different $\alpha $

    表  1  筋材总拉力对比

    Table  1.   Comparison of total reinforcement forces   kN/m

    ${k_{\rm{h}}}$本文方法文献[3]文献[19]文献[20]
    0 79 80 80 80
    0.1 112 96 98 107
    0.2 134 112 115 126
    下载: 导出CSV
  • 周小平,季璇,钱七虎. 强地震荷载作用下临水挡土墙的拟动力法稳定性分析[J]. 岩石力学与工程学报,2012,31(10): 2071-2081. doi: 10.3969/j.issn.1000-6915.2012.10.012

    ZHOU Xiaoping, JI Xuan, QIAN Qihu. Stability analysis of water front retaining wall subjected to seismic loads using pseudo-dynamic method[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 2071-2081. doi: 10.3969/j.issn.1000-6915.2012.10.012
    LO S C R, XU D W. A strain-based design method for the collapse limit state of reinforced soil walls or slopes[J]. Canadian Geotechnical Journal, 1992, 29(5): 832-842. doi: 10.1139/t92-090
    SHAHGHOLI M, FAKHER A, JONES C J F P. Horizontal slice method of analysis[J]. Géotechnique, 2001, 51(10): 881-885.
    NOURI H, FAKHER A, JONES C J F P. Development of horizontal slice method for seismic stability analysis of reinforced slopes and walls[J]. Geotextiles and Geomembranes, 2006, 24(3): 175-187. doi: 10.1016/j.geotexmem.2005.11.004
    SHEKARIAN S, GHANBARI A, FARHADI A. New seismic parameters in the analysis of retaining walls with reinforced backfill[J]. Geotextiles and Geomembranes, 2008, 26(4): 350-356. doi: 10.1016/j.geotexmem.2008.01.003
    CHOUDHURY D, NIMBALKAR S S, MANDAL J N. External stability of reinforced soil walls under seismic conditions[J]. Geosynthetics International, 2007, 14(4): 211-218. doi: 10.1680/gein.2007.14.4.211
    BELLEZZA I. Seismic active earth pressure on walls using a new pseudo-dynamic approach[J]. Geotechnical and Geological Engineering, 2015, 33(4): 795-812. doi: 10.1007/s10706-015-9860-1
    徐鹏,蒋关鲁,王宁,等. 地基对加筋土挡墙影响的对比分析[J]. 西南交通大学学报,2020,55(4): 752-757. doi: 10.3969/j.issn.0258-2724.20180765

    XU Peng, JIANG Guanlu, WANG Ning, et al. Comparative analysis of influence of foundation on reinforced soil retaining walls[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 752-757. doi: 10.3969/j.issn.0258-2724.20180765
    SIL A, DEY A K. Dynamic performance of cohesive slope under seismic loading[J]. International Journal for Computational Civil and Structural Engineering, 2014, 5(1): 1-14.
    PRATER E G. Yield acceleration for seismic stability of slopes[J]. Journal of the Geotechnical Engineering Division, 1979, 105(5): 682-687. doi: 10.1061/AJGEB6.0000804
    蒋薇,苏谦,张晓曦,等. 地震作用下加筋土边坡滑裂面的确定方法[J]. 西南交通大学学报,2015,50(1): 156-160. doi: 10.3969/j.issn.0258-2724.2015.01.023

    JIANG Wei, SU Qian, ZHANG Xiaoxi, et al. Determination method of slip surface of reinforced soil slope subjected to seismic load[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 156-160. doi: 10.3969/j.issn.0258-2724.2015.01.023
    林永亮,李新星. 地震作用下加筋土坡临界高度研究[J]. 岩土力学,2008,29(增刊1): 394-398.

    LIN Yongliang, LI Xinxing. Research on critical height of reinforced slopes under seismic load[J]. Rock and Soil Mechanics, 2008, 29(S1): 394-398.
    邓东平,李亮,赵炼恒. 基于Janbu法的边坡整体稳定性滑动面搜索新方法[J]. 岩土力学,2011,32(3): 891-898. doi: 10.3969/j.issn.1000-7598.2011.03.042

    DENG Dongping, LI Liang, ZHAO Lianheng. A new method of sliding surface searching for general stability of slope based on Janbu method[J]. Rock and Soil Mechanics, 2011, 32(3): 891-898. doi: 10.3969/j.issn.1000-7598.2011.03.042
    HU C, JIMENEZ R, LI S C, et al. Determination of critical slip surfaces using mutative scale chaos optimization[J]. Journal of Computing in Civil Engineering, 2015, 29(5): 04014067.1-04014067.9. doi: 10.1061/(ASCE)CP.1943-5487.0000373
    MALKAWI A I H, HASSAN W F, SARMA S K. Global search method for locating general slip surface using Monte Carlo techniques[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(8): 688-698. doi: 10.1061/(ASCE)1090-0241(2001)127:8(688)
    SARMA S K, TAN D. Determination of critical slip surface in slope analysis[J]. Géotechnique, 2006, 56(8): 539-550.
    万文,曹平,冯涛. 加速混合遗传算法在搜索边坡最危险滑动面中的应用[J]. 岩石力学与工程学报,2006,25(增刊1): 2770-2776.

    WAN Wen, CAO Ping, FENG Tao. Application of accelerating hybrid genetic algorithm to searching for the most dangerous slip surface of slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 2770-2776.
    AUSILIO E, CONTE E, DENTE G. Seismic stability analysis of reinforced slopes[J]. Soil Dynamics and Earthquake Engineering, 2000, 19(3): 159-172. doi: 10.1016/S0267-7261(00)00005-1
    NIMBALKAR S S, CHOUDHURY D, MANDAL J N. Seismic stability of reinforced-soil wall by pseudo-dynamic method[J]. Geosynthetics International, 2006, 13(3): 111-119. doi: 10.1680/gein.2006.13.3.111
    BASHA B M, BABU G L S. Reliability assessment of internal stability of reinforced soil structures:a pseudo-dynamic approach[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(5): 336-353. doi: 10.1016/j.soildyn.2009.12.007
    BELLEZZA I. A new pseudo-dynamic approach for seismic active soil thrust[J]. Geotechnical and Geological Engineering, 2014, 32(2): 561-576. doi: 10.1007/s10706-014-9734-y
    MURALI KRISHNA A, BHATTACHARJEE A. Behavior of rigid-faced reinforced soil-retaining walls subjected to different earthquake ground motions[J]. International Journal of Geomechanics, 2017, 17(1): 06016007.1-06016007.14. doi: 10.1061/(ASCE)GM.1943-5622.0000668
    GHAYESH M H. Nonlinear dynamic response of a simply-supported Kelvin-Voigt viscoelastic beam,additionally supported by a nonlinear spring[J]. Nonlinear Analysis:Real World Applications, 2012, 13(3): 1319-1333. doi: 10.1016/j.nonrwa.2011.10.009
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  383
  • HTML全文浏览量:  198
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-25
  • 修回日期:  2020-09-24
  • 网络出版日期:  2020-09-30
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回